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Abstract

How do people reason about others when planning deceptive
actions? How do detectives infer what suspects did based on
the traces their actions left behind? In this work, we explore
deception in a setting where agents steal other’s snacks and try
to determine the most likely thief. We propose a computational
model that combines inverse planning with recursive theory
of mind to select misleading actions and reason over evidence
arising from such plans. In Experiment 1, we demonstrate that
suspects strategically modify their behavior when acting de-
ceptively, aligning with our model’s predictions. Experiment 2
reveals that detectives show increased uncertainty when evalu-
ating potentially deceptive suspects—a finding consistent with
our model, though alternative explanations exist. Our results
suggest that people are adept at deceptive action planning, but
struggle to reason about such plans, pointing to possible limits
in recursive theory of mind.

Keywords: social cognition; theory of mind; deception; men-
tal simulation; causal inference

In the high-profile criminal trial of The People vs. O.
J. Simpson, the defense argued that evidence against Simp-
son—which included the defendant’s blood at the scene of
the crime—had been planted by police investigating the case.
This appeal by the defense reflects the potential for sophis-
ticated reasoning about the causes of others’ behavior; when
inferring what happened, people can consider the possibility
that evidence for a particular action was generated through
deceptive motives. How do people plan misleading actions,
and how do others incorporate possibly deceptive behavior in
their inferences about what happened?

In order to plant evidence or cover one’s tracks, one needs
to represent what inferences an observer would make based
on the evidence they see. Recent work has formalized these
inferences in the context of lying and lie detection, arguing
that both rely on a recursive theory of mind (ToM)—the abil-
ity to reason about others’ reasoning about one’s own reason-
ing—in which liars model the beliefs of lie detectors under
different possible outcomes, and lie detectors model the ex-
pected behavior of liars under different possible world states
(Alon et al., 2024; Oey & Vul, 2024; Oey et al., 2023; Schulz
et al., 2023; Tan et al., 2024). In these settings, people’s
ability to craft believable lies, and to detect such lies when
they are less credible, may arise in part from the relatively
constrained space of possible actions and world states. In
the real world, carrying out successful deceptive behavior re-
quires planning how to do it.

To make sense of others’ actions (even non-deceptive
ones), inverse planning models propose that people reason
about others as if they were approximately rational planners
(Baker et al., 2009, 2017; Jara-Ettinger et al., 2016, 2020).
This allows observers to infer unseen mental states such as
goals and beliefs that could have given rise to others’ behav-
ior (Ullman et al., 2009; Wu et al., 2023). To further account
for inferences about unobserved behavior after the fact (e.g.,
forensics), recent work has extended inverse planning to in-
corporate causal models of how actions may leave physical
traces in the environment (Jacobs et al., 2021; Jara-Ettinger
& Schachner, 2024; Jin et al., 2024; Lopez-Brau et al., 2022;
Pelz et al., 2020; Wu et al., 2024).

In our framework, we characterize agents who pursue their
goals without deception as naı̈ve suspects. When a naı̈ve de-
tective makes inferences about what happened, they engage in
simple inverse planning with naı̈ve suspects in mind. How-
ever, a naı̈ve detective can be exploited by a sophisticated sus-
pect that acts deceptively. Recent work exploring social be-
haviors such as storytelling and intervening on others’ emo-
tions has cast these behaviors as inverse inverse planning,
where reasoners optimize over a model of an audience or ob-
server (who is in turn executing inverse planning) to meet cer-
tain presentational goals (Chandra et al., 2024; Collins et al.,
2024; Yoon et al., 2020).

Inverse inverse planning models provide a possible account
of how a sophisticated suspect might plant evidence to make
another agent seem guilty to a naı̈ve detective. The daunting
task for the sophisticated detective is to perform yet another
inversion by considering the plausibility of behavior intended
to deceive the careless observer. Formulating the problem in
this way speaks to the inferential complexity of such reason-
ing, yet as the case of O. J. Simpson revealed, our intuitive
theories of deception allow juries and members of the general
public to evaluate this possibility. In this project, we develop
and test a recursive simulation model to capture how people
engage in deceptive action planning and reason about such
behavior.

Experimental Paradigm
Our experimental paradigm tests this theoretical framework
by examining how people plan and reason about deceptive ac-
tions in a controlled setting. We designed an environment fea-
turing agents in a household setting, where one of two agents
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Figure 1: Model and experiment overview. (A) In the recursive simulation model (RSM), a naı̈ve detective reasons about
naı̈ve suspects who only plan efficient paths to and from the fridge. Sophisticated suspects balance both path length and
the likelihood of being accused by a naı̈ve detective. Sophisticated detectives reasons about sophisticated suspects. (B) In
Experiment 1, participants drew paths for the agents and were instructed to either simply get a snack (naı̈ve), or to steal
someone else’s snack without being caught (sophisticated). (C) In Experiment 2, participants were asked to infer which agent
took the snack based on the evidence in each scene, given context about whether the agents were naı̈ve or sophisticated.

walks to the fridge in the kitchen to grab or steal a snack (Fig-
ure 1). The agents leave crumbs behind on their way back,
which provides a clue about their identity (see Lopez-Brau
et al., 2022). Our recursive simulation model plans decep-
tive behavior with a motive to frame the other agent based
on visual evidence, and inverts this planning process to draw
inferences about which agent took the snack. We test the gen-
erative component of our model in Experiment 1, where par-
ticipants act as suspects, and the inference component of our
model in Experiment 2, where participants act as detectives.

Recursive Simulation Model

Our model consists of three key components: (1) a path plan-
ning mechanism for suspects, (2) an evidence generation pro-
cess, and (3) an inference mechanism for detectives. We
model our environment as a grid world where agents may
step in any of the four cardinal directions, but cannot move
through walls or furniture. In each trial scenario, two sus-
pects, A and B, are initially located in different rooms. Sus-
pects plan paths to retrieve a snack from the kitchen, and de-
tectives draw inferences about which suspect most likely did
so after the fact. We use level-k reasoning (Camerer et al.,
2004; Wright, 2010) to capture the recursive relationship be-
tween suspects and detectives (Figure 1A): naı̈ve suspects are
only concerned with path efficiency, and naı̈ve detectives as-
sume as much. Sophisticated suspects choose paths to de-
ceive a naı̈ve detective, and sophisticated detectives draw in-
ferences about sophisticated suspects.

The recursive simulation model (RSM) simulates a suspect
s ∈ {A,B} at reasoning level k as a rational planner who sam-
ples paths p between their initial and target locations accord-

ing to the cost function:

C(sk, p) = w · len(p)+(1−w) · accusation(sk−1) (1)

where w ∈ [0,1] is a weight parameter that balances path ef-
ficiency against the probability of being accused, and len(p)
represents the normalized path length. The accusation term
accusation(sk−1) represents the probability of being accused
by a detective at level k−1 if that path were taken.1 The pa-
rameter w captures the trade-off between path efficiency and
accusation likelihood, with lower values of w leading to po-
tentially more deceptive behavior at the cost of taking longer
paths. The costs are passed through a softmax function con-
trolled by a temperature parameter τ. Each suspect’s path
model induces a probability distribution over evidence E—in
this case, possible locations of a dropped crumb:

Pr(E = e | sk) = ∑
p

1e∈P

len(p)
· exp

(
− C(sk−1, p)

τ

)
(2)

This models a uniform probability of leaving evidence at any
point along the path from the fridge back to the suspect’s
room. We approximated this distribution by sampling 1000
paths for each suspect and only considering all simple paths
(paths that do not repeat tiles). To make inferences over possi-
ble suspects given evidence E, the model applies Bayes’ rule
to compute the accusation likelihood:

accusation(sk) = Pr(sk | E = e) ∝ Pr(E = e | sk) ·Pr(sk) (3)

In this way, generative plans and accusation inferences are
computed recursively through the levels. We start with a de-
tective at level k = 0 who accuses each suspect equally of
having taken the snack, regardless of the evidence.

1Path lengths were rescaled to [0,1] and accusation likelihoods
were rescaled to [−0.5,0.5].



Naı̈ve suspect A suspect at level k = 1 can simplify their
costs to C(s1, p) = w · len(p), and becomes equivalent to a
simple planner that takes shortest paths.

Naı̈ve detective The detective at level k = 1 is an inverse
planner (Lopez-Brau et al., 2022) who assumes the agents
are naı̈ve suspects, and computes accusation likelihoods by
simulating how they would act by sampling with C(s1, p).

Sophisticated suspect The suspect at level k = 2 is an in-
verse inverse planner (Chandra et al., 2023) who reasons
about how their paths might be interpreted by a naı̈ve de-
tective. Their costs take into account the naı̈ve detective’s
accusation likelihoods computed for s1. This leads to more
strategic planning, such as taking a longer path back from the
fridge that may leave evidence closer to the other suspect’s
location, which would lead the naı̈ve detective to accuse the
wrong suspect.

Sophisticated detective Finally, the detective at level k = 2
evaluates evidence by simulating each agent as a sophisti-
cated suspect. They recognize that suspects may want to min-
imize their odds of being accused by taking paths that create
evidence which might incriminate the other suspect.

Together, the RSM reasons about potentially deceptive be-
havior by using recursive theory of mind to simulate other
agents’ actions and make judgments based on these simula-
tions. We test the RSM against alternative accounts that don’t
differentiate between naı̈ve and sophisticated suspects, and
ones that use heuristics instead of simulating behavior, allow-
ing us to quantify the impact of these processes for explaining
human judgments. We also compare participants’ responses
to those of a vision-language model, GPT-4o (OpenAI, 2024),
given similar prompting as human participants. Recent work
exploring the capabilities of multimodal models suggests that
they exhibit fairly robust visual scene understanding (e.g., ob-
ject identification, scene descriptions), but may fail in tasks
that require more sophisticated physical or causal reasoning
about the elements of the scene (Buschoff et al., 2024; Chen
et al., 2024; Li et al., 2025). In this way, GPT-4o perfor-
mance can offer insights into the complexity of planning and
social inference over a visual scene required in the current
task, while also contributing to our understanding of how well
such models can mimic human behavior.

Experiment 1: Suspects
All experiments reported here were pre-registered on OSF.2

In Experiment 1, participants acted as naı̈ve or sophisticated
suspects choosing a path to the fridge and back (Figure 1B).

Methods
Participants 100 participants (age: median = 37, SD = 12;
gender: 39 female, 56 male, 5 non-binary) were recruited on
Prolific and compensated $12/hour. All participants were na-
tive English speakers residing in the US. Participants were

2Data, materials, and links to pre-registrations can be found
here: https://github.com/cicl-stanford/recursive deception
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Figure 2: Experiment 1 path lengths. Length of paths pro-
duced by participants and predicted by models in Experi-
ment 1. Bars show means for each condition and path type,
error bars are bootstrapped 95% confidence intervals, and in-
dividual points show trial means.

randomly assigned to either the naı̈ve or sophisticated condi-
tion, with N = 50 in each.

Procedure Participants were first introduced to the apart-
ment setting and the task. In the naı̈ve suspect condition, they
were asked to plan a path for one agent to retrieve a snack
from the kitchen and return to their room. In the sophisticated
suspect condition, participants were instead asked to help one
of the agents steal a third roommate’s snack. They were told
that the agent was bound to drop crumbs on their way back
with the food, but would not know exactly when or where,
and that they wanted to avoid leaving obvious evidence of
having taken the snack. Participants completed a practice trial
and a required comprehension check before proceeding to the
main experiment. In each trial, participants were shown an
image and asked to draw a path from an agent’s starting loca-
tion to the fridge, and then from the fridge back to the agent’s
starting location, by clicking on adjacent floor tiles in the im-
age. They were not allowed to repeat tiles or move through
furniture or walls. The experiment took an average of 13.2
minutes (SD = 6.7) to complete.

Design We designed nine scenes of apartments with varied
layouts and locations of rooms, furniture, and agents. Partici-
pants were asked to draw paths to and from the fridge for both
agents in all nine scenes, yielding a total of 36 trials.

Models To compare model predictions to participants’ re-
sponses, we sampled 50 paths from the RSM for each trial.
The weight w and softmax temperature τ in the RSM were
fit by minimizing the Earth Mover’s Distance (EMD; Rub-
ner et al., 2000) between the distributions of path locations
produced by the model and participants. EMD accounts for
both the spatial distance between locations and the proba-
bility mass of different paths. We also evaluated a uniform
simulation model that samples all paths with equal proba-
bility, irrespective of length or accusation likelihood. This
model does not differentiate between naı̈ve and sophisticated
levels of reasoning. Finally, we compared participants’ re-
sponses to GPT-4o, which was provided with the same im-
ages for each trial along with a text prompt that mirrored
the instructions given to participants in each condition. The

https://github.com/cicl-stanford/recursive_deception
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Figure 3: Experiment 1 results for an example trial. Paths returning from the fridge (initial tile highlighted in green) back
to the agent’s room generated by participants, the RSM, GPT-4o, and the uniform model for a select trial. Paths consisted of
successive adjacent tiles and were not allowed to repeat tiles or pass through furniture or walls.

prompt also included a JSON scene graph that listed the po-
sitions and dimensions of the agents, furniture, and walls in
that trial. We used a temperature of 0.7 and zero-shot chain-
of-thought prompting (Kojima et al., 2023; Yang et al., 2024).
We queried GPT-4o 50 times per trial and condition.

Results
We compared the length and distribution of paths produced
by participants and models in the naı̈ve and sophisticated sus-
pect conditions. Of GPT-4o’s responses, 7% were non-paths
(e.g., refusals to answer) and 65% were invalid paths (e.g.,
moved through walls). We only included the remaining 28%
of responses that contained valid paths in the analysis. The
RSM used path cost weights w = 0.7 for both conditions and
softmax temperatures τnaı̈ve = 0.01 and τsophisticated = 0.05.

Path length The RSM predicts that sophisticated suspects
will take more roundabout paths when returning from the
fridge compared to naı̈ve suspects, since crumbs dropped
along direct paths make suspects more likely to be accused
by a naı̈ve detective. Therefore, average return path lengths
should differ between naı̈ve and sophisticated suspects. For
both participants and the RSM, return paths were longer in
the sophisticated condition than in the naı̈ve condition, while
paths to the fridge were similar in length (Figure 2). Nei-
ther GPT-4o nor the uniform model showed this pattern. As a
quantitative test, we fit a linear mixed effects model to partic-
ipants’ path lengths using condition (dummy coded as naı̈ve
= 0, sophisticated = 1) as a fixed effect, with random inter-
cepts to account for variation across participants and trials.
We found that condition was a credible positive predictor of
path length for participants (posterior mean: 2.15; 95% high-
est density interval: [1.36, 2.95]) and the RSM (4.50 [4.18,
4.81]), but not for GPT-4o (−0.16 [−0.48, 0.18]).

Path distributions In addition to path length, we examined
how closely the distribution of participants’ paths aligned
with those produced by different models. In the naı̈ve con-
dition, participants often took efficient paths, while in the
sophisticated condition, they tended to wander around the
kitchen in hopes of avoiding dropping crumbs in an incrim-
inating spot. The RSM qualitatively captured these differ-
ent patterns (Figure 3). In contrast, GPT-4o tended to predict
shortest paths in both conditions. The uniform model, mean-

while, often generated paths that did not match either naı̈ve
or sophisticated agents.

To measure the similarity between participant and model
path distributions, we computed the EMD between the prob-
ability distribution of locations visited (Figure 4). We fit a
linear mixed effects model to predict average EMD values us-
ing condition (naı̈ve or sophisticated) and model type as fixed
effects. The RSM was found to have a credibly smaller EMD
compared to GPT-4o (difference: −0.37; 95% HDI: [−0.65,
−0.10]) and the uniform model (−0.93 [−0.65, 1.19]).

Experiment 2: Detectives
In Experiment 1, we found that participants chose different
paths depending on whether they had deceptive intentions.
This pattern was uniquely captured by the RSM. In Exper-
iment 2, we investigate how people make inferences about
suspects from physical evidence (Figure 1C). We compare the
inferences of naı̈ve and sophisticated detectives given differ-
ent information about the suspects’ level of reasoning.

Methods
Participants 100 participants (age: median = 37, SD = 12;
gender: 67 female, 32 male, 1 non-binary) were recruited and
compensated $12/hour. All participants were native English
speakers in the US. They were randomly assigned to either
the naı̈ve or sophisticated condition, with N = 50 in each.

Procedure The procedure was initially very similar to Ex-
periment 1. After identical instructions and comprehension
check questions, participants completed six trials selected
from Experiment 1 as a suspect in the same condition. These
trials were meant to familiarize them with the generative pro-
cess of suspect planning before making detective inferences.
Participants then completed a second comprehension check.

In each of the main trials, participants saw an image show-
ing the two agents at their starting locations and a pile of
crumbs left somewhere in the kitchen. In the naı̈ve detec-
tive condition, they were simply asked to determine which
agent had most likely retrieved a snack. In the sophisticated
detective condition, they were told that one of the agents
had stolen a snack. The agents knew they would leave evi-
dence behind, although they would not know exactly where,
and wanted to avoid leaving evidence that incriminated them-



selves. Participants were asked to judge which agent they
thought took the snack from the fridge, responding on a con-
tinuous slider ranging from “definitely agent A” to “definitely
agent B”, with the midpoint labeled “uncertain”. The experi-
ment took an average of 11 minutes (SD = 4.9) to complete.

Design The same nine layouts from Experiment 1 were
used to generate three trials each for a total of 27 unique tri-
als. Crumb locations for each trial were selectively sampled
to produce a wide range of predicted judgments across con-
ditions. In particular, model predictions for some of the trials
exhibited high certainty about one of the suspects, while oth-
ers were more uncertain.

Models As in Experiment 1, we compared participants’ re-
sponses to those of the RSM, GPT-4o, and the uniform sim-
ulation model. The RSM parameters w and τ were esti-
mated by minimizing squared error between model predic-
tions and mean participant judgments. GPT-4o was given
similar prompts as in Experiment 1, but was instead asked
to produce a judgment about which agent took the snack on
the same numerical scale as the slider shown to participants.

In addition, we compared these models to several alterna-
tives that replace or modify key components of the RSM. The
first is a variant of the RSM based on empirical data from
Experiment 1. This model computes the likelihood of each
suspect leaving evidence at a particular location (Equation 2)
using the distribution of paths produced by participants in
place of simulated paths, allowing us to assess how detec-
tive predictions differ when using simulated compared to ac-
tual participant-generated paths. Meanwhile, to test whether
simulating suspects at the correct level of recursion is in fact
a key factor of detectives’ predictions, we also considered a
“mismatched” empirical model, in which naı̈ve detective pre-
dictions are computed based on sophisticated human suspect
paths and sophisticated detectives use naı̈ve human suspect
paths. Finally, to understand whether participants need to
simulate path-planning behavior in this task, we evaluated
a heuristic model that relies on directly observable features
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Figure 4: Experiment 1 model comparison. The Earth
Mover’s Distance (EMD) between suspect paths generated
by participants and various models. Lower numbers indicate
more similar distributions to humans. Bars show means ag-
gregated over all trials, error bars are bootstrapped 95% con-
fidence intervals, and small points show individual trials.

to infer the accusation likelihood of each agent rather than
simulations of suspect behavior. The heuristic model fits a
linear regression with four features—the Euclidean distance
between each agent and the fridge, and between each agent
and the evidence—to participants’ judgments on each trial.

Results

GPT-4o gave valid numerical responses in 47% of all queries;
only those responses were included in our analyses. The RSM
used path cost weights wnaı̈ve = 0.8, wsophisticated = 0.5, and
softmax temperatures τnaı̈ve = 0.05, τsophisticated = 0.2.

Inference (un)certainty Participants in the detective con-
ditions were asked to infer which agent took the snack based
on the location of the crumbs. We hypothesized that partic-
ipants would exhibit more uncertainty in their inferences in
the sophisticated condition compared to the naı̈ve condition
because sophisticated suspects are expected to produce less
diagnostic paths (see Figure 3). We fit a linear mixed ef-
fects model to predict the magnitude of participants’ slider
responses, where larger magnitudes indicate more certainty
about a particular agent. The fixed effect of condition was
dummy coded as naı̈ve = 0, sophisticated = 1, while account-
ing for random variation in responses across trials and partic-
ipants. The model showed a credible negative effect of condi-
tion on slider response (posterior mean: −10.28; 95% HDI:
[−13.57, −7.13]), indicating that sophisticated participants’
judgments were closer to zero, the “uncertain” midpoint of
the response slider.

Model comparison We compared participants’ responses
in each trial and condition to model predictions (Figure 5).
Table 1 shows Akaike Information Criterion (AIC) scores for
each model fit to mean responses across trials in each con-
dition. Across both conditions, the RSM captured partici-
pants’ judgments well in terms of correlation, RMSE, and
AIC. The uniform simulation and heuristic models also per-
formed comparably. The empirical model based on paths
drawn in Experiment 1 did not perform well, likely due to id-
iosyncrasies in the paths that suspect participants drew (they
tended to avoid zig-zagging, for example, which resulted in
sparser path distributions). The mismatched empirical model

Table 1: Experiment 2 model comparison. AIC scores for
all detective models, computed using n= 2 parameters for the
RSM, n = 5 for the heuristic model, and n = 0 for all others.
Lower scores indicate better model fits (best, second best).

Model Naı̈ve Sophisticated

RSM 206.22 203.02
Empirical 239.43 241.10
Mismatched empirical 247.85 245.34
GPT-4o 232.45 212.51
Uniform simulation 200.85 203.24
Heuristic 207.16 184.87
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Figure 5: Experiment 2 results. Participants’ mean detective inferences in each condition (top row = naı̈ve, bottom row =
sophisticated) compared to predictions from (A) the RSM, (B) a model using empirical path data from Experiment 1, (C)
same model as (B) but with switched data from the two conditions, (D) GPT-4o, (E) the uniform simulation model, and (F) the
heuristic model. Error bars are 95% bootstrapped CIs, RMSE = root mean squared error, and r = Pearson correlation coefficient.

generally performed worse; though naı̈ve suspects were com-
parable to sophisticated suspects for predicting sophisticated
human detectives, sophisticated suspects were worse at pre-
dicting naı̈ve human detectives. A possible explanation for
this is that participants in the sophisticated detective condi-
tion were generally more uncertain, so the exact location of
the evidence mattered less for their judgments. GPT-4o also
did not perform as well, suggesting that inference about de-
ceptive visual evidence may still be a challenging task for
vision-language models.

General Discussion
In this paper, we investigated how people plan actions to mis-
lead others, and how they make inferences about the behavior
of misleading actors. We developed a computational model
that recursively simulates suspects choosing actions that leave
behind evidence for detectives, who in turn invert the sus-
pects’ planning model to infer the source of the evidence. We
tested our model in a variety of scenarios asking participants
to act as suspects planning actions with or without deceptive
intent (Experiment 1), or detectives inferring the most likely
actor given evidence of a naı̈ve or intentionally misleading
suspect’s behavior (Experiment 2).

Our results suggest that people are adept at acting as de-
ceptive suspects, but may struggle to reason about them. As
suspects, participants deviated from the shortest path and
planned routes that were consistent with framing the other
apartment resident when the goal was not to be accused of
stealing food. However, as detectives, participants exhibited
uncertainty about which of agent was the likely thief when
taking into account the potential for misleading actions by
each agent. One possible explanation is that simulating po-
tentially disingenuous agents in the current task may be cog-
nitively demanding; the RSM requires several layers of recur-

sion to reason as a sophisticated detective. Participants’ sim-
ulations may have been noisy at this depth, or they may have
preferred simpler reasoning strategies that did not involve
simulation at all. Consistent with this, alternative models
that relied on uniform simulations and simple visual heuris-
tics performed similarly to the RSM as an account of par-
ticipants’ sophisticated detective inferences. These findings
align with previous research on deception, which suggest that
lying can be cognitively demanding (Vrij et al., 2006; Zuck-
erman, 1981), and that people perform at chance when detect-
ing lies in many situations (Bond & DePaulo, 2006; Levine,
2010) or exhibit more accurate detection when using simple
cues and heuristics (Verschuere et al., 2023).

Several models were highly correlated with participants’
inferences in Experiment 2. Future work should aim to tease
these approaches apart. For example, by manipulating room
layouts and furniture positions, superficial cues like the close-
ness of the evidence to a suspect may not be as diagnostic
anymore. In addition, by increasing the costs of misidenti-
fication or the rewards of successful forensics, people might
rely on more sophisticated simulation-based reasoning. Prior
work has found that manipulating the cost of accusation im-
pacts the behavior of both liars and lie detectors (Oey & Vul,
2024; Oey et al., 2023), suggesting that deceptive behavior
and inferences about deception rely on general purpose util-
ity calculations (Jara-Ettinger et al., 2016, 2020).

Finally, our paradigm allows us to incorporate additional
types of evidence, such as the sounds produced by an agent’s
actions. We would expect suspects to act differently based on
what sources of evidence they believe a detective has access
to. The current work contributes towards a comprehensive
account of the ways people plan and reason about deceptive
behavior, offering insights into the broader sophistication and
flexibility of human social reasoning.
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