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What are the bottlenecks in human sequential reasoning?

We apply a LLM-based cognitive model of social reasoning to the problem of
predicting an opponent’s next move In rock, paper, scissors.

The model captures human performance against algorithmic opponents & suggests that hypothesis generation
IS the primary computational bottleneck in this sequential pattern recognition setting.

METHODS

Capturing human pattern recognition A computational model of human social
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RESULTS

Hypothetical Minds captures human sequential reasoning: similar performance against algorithmic opponents
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Hypothesis generation is key bottleneck: removing hypothesis generation leads to near-ceiling performance
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Overcoming the bottleneck: pedagogically-inspired interventions help the model discover opponent strategies
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