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Abstract

How do people build up trust with artificial agents? Here, we
study a key component of interpersonal trust: people’s ability
to evaluate the competence of another agent across repeated
interactions. Prior work has largely focused on appraisal of
simple, static skills; in contrast, we probe competence evalua-
tions in a rich setting with agents that learn over time. Partici-
pants played a video game involving physical reasoning paired
with one of four artificial agents that suggested moves each
round. We measure participants’ decisions to accept or revise
their partner’s suggestions to understand how people evalu-
ated their partner’s ability. Overall, participants collaborated
successfully with their agent partners; however, when revis-
ing their partner’s suggestions, people made sophisticated in-
ferences about the competence of their partner from prior be-
havior. Results provide a quantitative measure of how people
integrate a partner’s competence into their own decisions and
may help facilitate better coordination between humans and
artificial agents.
Keywords: trust; social inference; artificial agents; compe-
tence; learning

Introduction
How do people build up trust across repeated interactions?
This question has motivated research from diverse areas
of cognitive science spanning social psychology (Simpson,
2007; Deutsch, 1973) as well as game theory and economics
(Camerer & Weigelt, 1988; Berg, Dickhaut, & McCabe,
1995). As artificial intelligence agents become increasingly
ubiquitous in our everyday lives, the question of how to build
up trust with them has also gained prominence in human-
computer interaction (HCI) and robotics (Soh, Xie, Chen, &
Hsu, 2020; Chen, Nikolaidis, Soh, Hsu, & Srinivasa, 2020).

For instance, in autonomous driving settings people rou-
tinely make decisions about how much to trust an artificial
driving agent. And in many industrial domains, people work
closely with automated agents, sometimes for high stakes
tasks. The emergence of trust in our interactions with arti-
ficial agents involves a range of complex social inferences,
such as recognizing that they share our goals or utilities to
begin with (Serrino, Kleiman-Weiner, Parkes, & Tenenbaum,
2019). However, one of the central features of human collab-
oration with artificial agents is that we trust them to be com-
petent across a range of task settings. Indeed, greater levels
of trust may simply correspond to a belief that the agents are
competent in a wider range of settings; for example, trust in
an autonomous vehicle may in large part reflect a belief that
it can handle a suitably broad array of driving challenges.

How then do people assess another agent’s competence
over repeated interactions? Prior work in developmental psy-
chology suggests that inferences about another person’s com-
petence emerge early in development and draw on a rich
set of abstractions about task difficulty and human behavior
(Gweon, 2021; Leonard, Bennett-Pierre, & Gweon, 2019).
As adults, this ability continues to develop, allowing us to
make complex inferences about other people which draw on
rich internal models (Vélez & Gweon, 2019, 2021), meta-
cognitive skills (Pescetelli & Yeung, 2021), and expectations
(Leong & Zaki, 2018; Chang, Doll, van’t Wout, Frank, &
Sanfey, 2010). Recent work in robotics and HCI suggests that
when determining a robot or artificial agent’s competence,
people may rely on similar cognitive processes, leveraging
abstractions about both the agent—e.g., their risk aversion
(Xie, Bodala, Ong, Hsu, & Soh, 2019)—and the environ-
ment, such as how much the agent’s ability will generalize
across tasks (Soh et al., 2020).

Despite this convergence of findings across psychology
and artificial intelligence, there remain significant challenges
in characterizing how people assess the competence of an-
other agent. For one, real-world judgments of competence
are often nebulous. How good is somebody at baking or pre-
dicting the stock market or writing academic papers? Sec-
ond, in many complex settings, people’s judgments of another
agent’s competence rely in large part on that agent’s ability to
learn in the task environment.

The current study builds on prior work by addressing both
of these aspects of people’s competence evaluations. First,
unlike prior work on advice taking that has focused on judg-
ments about abstract variables, e.g., change in stock market
prices (Leong & Zaki, 2018) or the outcome of a card flip
(Vélez & Gweon, 2019), here we explore how people incor-
porate input from an artificial agent when predicting concrete
physical events. Second, rather than isolating competence
judgments about static agents (Chen et al., 2020), the current
experiment probes people’s ability to detect another agent’s
learning over time. A better understanding of how an agent’s
learning impacts competence judgments in a rich physical do-
main may lead to more general insights into how people rea-
son about the abilities of others, and how this reasoning im-
pacts their subsequent decisions to trust them in a range of
everyday settings.
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Figure 1: Task and Experimental Design. (A) Participants worked with an artificial agent partner to catch a ball launched from
the edge of a circle. Their partner began by suggesting a paddle location which participants could either accept or modify. (B)
The agents chose suggested paddle locations from a distribution around the ball’s true landing position. The variance of this
distribution determined how reliable the agent’s suggestions were. Participants were assigned to one of four conditions that
varied the reliability of the agent’s paddle suggestions over the course of the experiment.

Here, we investigate people’s ability to collaborate with a
dynamic artificial agent in a challenging physics-based video
game. Participants were tasked with catching a ball launched
from different locations around a circle by placing a paddle
where the ball would land. Each round, they were given a
suggestion from their agent partner about where to place the
paddle to catch the ball. Building on prior work, we use peo-
ple’s decisions about whether to accept or modify their part-
ner’s suggestions to probe judgments of the partner’s compe-
tence (Xie et al., 2019; Chen et al., 2020). Critically, people’s
agent partners varied in their true competence and improve-
ment over time. We first ask how much people’s behavior
in the game draws on their own physical judgments versus
the suggestions of their partner and how this varies based on
their partner’s competence. Next, we ask whether people’s
intervention decisions reflect ongoing assessments of their
partner’s ability rather than trial-specific context. Our experi-
ments revealed several key findings: First, rather than relying
exclusively on their own physical judgments or the advice of
their partner, people integrated both sources of information
in their interventions. Moreover, the degree to which they in-
corporated their partner’s input was predicted by how reliable
the agent had been in the past, not just the quality of its cur-
rent advice. Taken together, our results suggest that people’s
physical judgments in collaborative settings involve rich, ab-
stract inferences about others based on their past behavior.

Experiment
Participants
256 adults recruited from Prolific completed the task online.
Data from 12 participants were excluded from subsequent

analyses due to technical issues encountered during the exper-
iment, resulting in 244 participants with complete data (aver-
age age: 33.8 years, SD = 11.3; 127 male, 103 female, 13
non-binary; educational background distributed across high
school, 4-year college, and graduate degrees). The experi-
ment lasted approximately 25 minutes and participants were
paid $14/hr based on this expected completion time. All par-
ticipants provided informed consent in accordance with the
UC San Diego IRB.

Human-agent collaboration task
In the experiment, participants tried to catch a virtual ball
launched from a point on a circle using a rectangular pad-
dle positioned along the outside of the circle (see Figure 1).1

Participants worked together with an artificial agent “partner”
who was trying to help them on the task. On each round, the
partner suggested a paddle location based on the ball’s launch
position; participants could either accept this suggestion or
adjust the paddle themselves before launching the ball.

Each trial began with participants’ agent partner suggest-
ing a paddle location that would catch the ball; the paddle
was shown moving around the circle and a small animation
on the right showed the agent “thinking.” Once the agent had
moved the paddle to its suggested location, participants were
given the opportunity to either adjust the paddle with the ar-
row keys or keep their partner’s suggestion. If participants
adjusted the paddle, the agent’s original recommendation re-

1All code used to run the experiment, as well as code used in
analyses below, can be found at:
https://github.com/cogtoolslab/trust agents

cogsci2022 public.

https://github.com/cogtoolslab/trust_agents_cogsci2022_public
https://github.com/cogtoolslab/trust_agents_cogsci2022_public


mained visible and marked in gray. When participants settled
on a paddle location, they launched the ball with the spacebar.
The ball’s path was animated and participants were shown a
message indicating whether they had successfully caught it
before proceeding to the next trial.

Every session consisted of 96 trials divided into eight
blocks of 12. These “blocks” were not visible to participants;
in each block, the ball appeared at locations sampled in a ran-
dom order from each of 12 bins of equal width along the cir-
cle’s circumference.

Manipulating agent ability
Participants were assigned to one of four conditions that ma-
nipulated the quality of their partner’s suggested paddle lo-
cations: an unreliable partner, a reliable partner, an improv-
ing partner, and a worsening partner. The agent’s suggested
paddle location on each trial was an angle x sampled from
a von Mises distribution (a circular approximation to a nor-
mal distribution) with mean µ equal to the ball’s final landing
angle ρ, and variance σ2 determined by the agent’s compe-
tence level. The reliable agent had a low σ2 ≈ 10 degrees;
the sampled paddle location was almost always close to the
ball’s true landing location. By contrast, the unreliable agent
sampled its paddle locations from a high-variance distribu-
tion with σ2 ≈ 48 degrees. The high and low-competence σ2

values were chosen to give the agents expected success rates
of around 80% and 20%, respectively. Meanwhile, the im-
proving agent began with a σ2 value equal to the unreliable
agent’s but every 12 trials the variance decreased by a fixed
amount so that during the final 12 trials, it had a σ2 equal to
the reliable agent’s. The worsening agent was symmetrical
but in the opposite direction.

Measuring human appraisals of agent ability
A core goal of our study was to investigate the impact of ma-
nipulating an agent’s behavior on participants’ impressions of
its competence, thereby impacting how they approached col-
laborating with it. We measured participants’ appraisals of
their partner’s task ability as the degree to which they inter-
vened before committing to a final paddle location on each
trial. Intuitively, participants who judged their partner to be
more competent would be less likely to revise their partner’s
suggestion, or do so to a lesser extent. On each trial, we mea-
sured whether participants intervened to adjust the paddle’s
position away from their partner’s initial suggestion and the
magnitude of this intervention.

If participants were maintaining an ongoing estimate of
their partner’s task competence, their intervention behavior
might be guided by this estimate above and beyond the trial-
specific accuracy of their partner’s suggestions. For example,
participants might place more confidence in the suggestions
of the reliable agent relative to the unreliable agent, even
when equating the magnitude of the error in the agent’s cur-
rent recommendation. To isolate the impact of learned expec-
tations about each agent’s ability on participants’ interven-
tions, we included a critical trial in each 12-trial block (un-

beknownst to participants): Rather than sampling locations
as described above, the suggested paddle location on critical
trials was set to a fixed distance from the ball’s landing loca-
tion that was close to the true landing location (approximately
16 degrees) yet would result in missing the ball unless the
participant intervened. Including these critical trials enabled
direct comparisons between conditions while controlling for
the magnitude of the error in the agent’s initial suggestion.

Post-study questionnaire
After completing all 96 trials, participants were given a post-
study questionnaire to collect basic demographic information
and two additional variables we did not analyze here: prior
physics courses taken and prior experience with video games.
Next, they were asked how often they thought they had inter-
vened on the previous trials and how often they would ex-
pect to intervene if they were to play another 96 rounds with
this same partner (both 1-100% scales). Finally, they were
asked to indicate how much they trusted the agent to catch
the ball (five-point rating scale) and to describe how they de-
cided whether to intervene in the task.

Results
We began by examining the performance of human-agent
teams on the task overall. They caught the ball on 73.8%
(SD = 14.7%) of trials across all conditions, improving from
55.9% in the first trial block to 82.8% in the final block. The
root mean squared error (RMSE) of the final paddle loca-
tions was 14.85 degrees (SD = 7.56 degrees). Together, these
findings suggest that while the task was challenging, partici-
pants were nevertheless able to achieve reasonably high per-
formance with their agent partners. However, our primary
interest is in how their behavior differed across conditions as
a result of differences in their partner’s ability.

People combine information sources to make
intervention decisions
To understand how participants coordinated with their part-
ner, we compare three possible accounts: First, it may be that
people trusted their agent partner completely, regardless of
its competence. On this view, participants’ own physical in-
tuitions would have played no role in their decisions. A sec-
ond account takes the opposite perspective; people may have
ignored their partner’s suggestions, simply choosing the best
paddle position each round (i.e., if the agent’s suggestion was
accurate, people would accept it and if not, they would inter-
vene to correct it). Finally, a third possibility is that people’s
behavior was somewhere in the middle of these two. Rather
than consistently following their partner’s suggestion or uni-
laterally seeking the optimal paddle position each round, peo-
ple may have relied on a combination of their own physi-
cal intuitions and their partner’s recommendation to decide
where to place the paddle. We consider each of these op-
tions below; our results suggest that participants integrated
intuitive physical judgments with their partner’s guidance and



that how much they incorporated their partner’s suggestions
was calibrated to the their partner’s task performance.
Participants intervened to improve accuracy We start by
considering the first hypothesis above, that people merely
acted in accordance with their partner’s suggestions. If this
were true, we would expect intervention rates to be low and
performance in each condition to closely match the ability of
the agents in that condition. Figure 2 (top) shows average
intervention rates (the percent of trials in which each subject
modified the agent’s original suggestion) in each trial block.
Notably, intervention rates were high in all conditions, even
with the reliable agent, whose suggestions would catch the
ball on approximately 80% of trials.

Figure 2 shows an overall increase in intervention rates
even in the reliable and unreliable conditions where agent
performance did not change. This seems most likely to be a
result of participants’ general task improvement noted above.
A generalized linear mixed effects model fit to participants’
intervention decisions (binary) with a random intercept for
each participant showed a significant main effect of trial block
(χ2(1) = 226.2, p < 0.001) and a significant interaction be-
tween trial block and condition (χ2(3) = 404.8, p < 0.001).
Thus, far from merely trusting their partner’s suggestions,
participants took an active role in intervening and calibrated
their interventions to their partner’s underlying ability.
Intervention decisions incorporated agent suggestions
In light of the high intervention rates across conditions, one
account of people’s behavior is that they simply relied on their
own intuitive physics to respond. On this view, the quality of
their partner’s recommendations would have been irrelevant.

To test this possibility, we examine the distribution of er-
rors on each trial relative to both the ball’s final landing
location and the agent’s suggestion. Intuitively, if people
completely disregarded their partner’s suggestion, their errors
would be centered on the ball’s true landing location. Alterna-
tively, if people took their partner’s suggestion into account,
we might expect final paddle placements to be systematically
biased towards or away from the partner’s initial suggestion.

Figure 2 (bottom) shows the distributions of participants’
average error in each condition. Critically, these distribu-
tions are signed relative to the ball’s landing location and the
agent’s paddle suggestion; error greater than 0 represents par-
ticipants placing the paddle away from the ideal catching lo-
cation in the direction of the agent’s suggestion. Meanwhile,
error less than 0 represents participants placing the paddle
away from the ideal location in the opposite direction of the
agent’s suggestion. The dashed lines in Figure 2 (bottom)
show the average signed error in each condition.

Participants’ signed error was significantly greater than 0 in
all four conditions, reflecting a stable bias toward their part-
ner’s recommended paddle locations (reliable: t(56)= 15.70;
improving: t(64) = 12.34; worsening: t(54) = 14.20; un-
reliable: t(66) = 8.13, all ps < 0.001). This suggests that
people’s decisions about where to place the paddle were not
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Figure 2: Top: Mean paddle intervention rates by block. Bot-
tom: Error distribution in each condition, with positive values
indicating responses whose error was in the same direction as
the agent’s suggestion and negative values indicating the op-
posite. The black dashed line indicates the true landing loca-
tion of the ball. Colored vertical lines indicate means in each
condition. Curves are based on kernel density estimation.

merely an effort to find the best location independent of their
partner’s advice; rather, they showed a systematic anchoring
towards the agent’s recommendation.

Taken together, the results in Figure 2 suggest that peo-
ple’s decisions about where to place the paddle integrated
multiple sources of information. They did not merely trust
their agent partner regardless of its competence, nor did they
simply choose the best move each round without considera-
tion for their partner’s recommendation. However, the agent’s
suggestion on a given trial is not the only source of informa-
tion that might help participants decide where to ultimately
place the paddle. Across repeated interactions, agents in each
condition offer ongoing evidence of their underlying compe-
tence through the accuracy of their paddle suggestions. Par-
ticipants can use this information to calibrate how much their
final paddle locations should be influenced by their partner.



People relied on past performance to guide
interventions
Since agent partners varied across conditions in how helpful
their paddle suggestions were, we hypothesize that partici-
pants incorporated this information into their decisions about
how closely to follow their partner’s suggestions.

To test this, we begin by looking at the relationship be-
tween the agent’s paddle suggestion error and participants’
paddle intervention magnitude across conditions. If partici-
pants were correcting for the agent’s errors in a way that did
not integrate the agent’s underlying ability, this relationship
should be similar across conditions (i.e., they should adjust
for small errors less and larger errors more in a similar fash-
ion). We fit a linear mixed effects model of participant in-
tervention magnitude (on trials in which they intervened) as
a function of agent recommendation error and condition with
a random intercept for participants. Here, we find a signifi-
cant interaction of condition and agent error (χ2(3) = 293.8,
p < 0.001), suggesting that the agent’s competence played a
critical role in people’s intervention magnitudes across differ-
ent suggestion error magnitudes. However, this result could
be driven in part by the fact that the underlying distribution
of agent errors differed substantially across conditions (by
design). Thus, a more apples-to-apples comparison should
examine people’s intervention behavior for similar levels of
agent error across conditions. For this, we turn to the eight
critical trials that each participant completed.

Critical trial interventions reflected differences in agent
ability If people’s responses combined their own estimate
of the ball’s final location and their partner’s suggestion—
without regard to their partner’s overall reliability—we
should not see any difference in intervention behavior on the
critical trials, since the agent’s paddle suggestion error on
critical trials was the same across conditions. Figure 3 (top)
shows average intervention rates on critical trials. We fit a
generalized linear mixed effects model to participants’ inter-
ventions (binary) on critical trials; the fixed effect of con-
dition produces a significantly better fit than random inter-
cepts and correlated slopes to account for individual increases
in intervention rate over the experiment (χ2(3) = 16.5, p <
0.001). Consistent with the pattern observed in Figure 3
(top), estimated marginal means were significantly different
between unreliable and reliable conditions (p= 0.01), as well
as improving and reliable (p = 0.003). Thus, decisions about
when to intervene on critical trials were sensitive to differ-
ences in the agents’ underlying abilities.

Participants’ decisions about how much to intervene on
critical trials (Figure 3, bottom) shows a similar pattern.
While those paired with an unreliable or improving part-
ner adjusted the paddle by an amount close to the optimal
level, participants whose partner was very accurate (reliable)
or started out highly accurate (worsening) made smaller ad-
justments on critical trials. In a linear mixed effects model
predicting intervention distance—on critical trials where par-
ticipants intervened—we found a significant effect of condi-

tion relative to a baseline model which included only ran-
dom effects of subject (χ2(3) = 28.3, p < 0.001). Estimated
marginal means were significantly different across unreliable
and reliable agents (p < 0.001), unreliable and worsening
(p = 0.005), and improving and reliable (p < 0.001). Thus, a
complete account of reasoning on this task suggests that peo-
ple maintain an underlying assessment of their partner’s com-
petence over time and calibrate their decisions about whether
to intervene, and how much, based on this assessment.

Notably, both intervention rates and magnitudes in Figure
3 show a similar imbalance between intervention behavior
with the improving and worsening agents, despite the fact that
these two exhibited symmetrical patterns of learning and de-
teriorating performance. This raises the intriguing possibility
that participants accorded more weight to earlier trials when
evaluating the competence of these dynamic partners. How-
ever, further work is needed to confirm this.
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Figure 3: Intervention behavior on critical trials. Top: aver-
age proportion of critical trials on which participants chose to
intervene. The dashed line indicates optimal behavior (criti-
cal trials always required intervention to catch the ball). Bot-
tom: average distance participants intervened on critical trials
in which they chose to intervene. The dashed line indicates
the optimal intervention distance on these trials.

Past performance and future expectations
So far, we have found evidence that participants’ decisions
about when to intervene with their partner, and how much,
rely on an ongoing estimate of their partner’s overall compe-
tence and that such estimates are sensitive to differences in
ability and learning rate over time. But how predictive were
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Figure 4: Participant estimates of how much they intervened
with each agent compared to how much they would expect to
intervene in future rounds with the same partner.

these estimates? To better understand the granularity of par-
ticipants’ judgments of their partner’s competence, we exam-
ine responses on the post-experiment survey.

Figure 4 shows participants’ subjective estimates of how
often they had intervened in the experiment trials, paired with
their responses indicating how much they would expect to in-
tervene if they played 96 more rounds with the same part-
ner. These results provide an estimate of the accuracy of
participants’ expectations about their partner based on past
performance. Responses suggest that people’s ability to ex-
plicitly forecast their partner’s future behavior was limited.
In a 4 (between-subjects condition: reliable, unreliable, im-
proving, worsening) by 2 (within-subjects rating type: re-
ported, expected) repeated measures ANOVA of the interven-
tion rates shown in Figure 4, differences between conditions
were significant (F(3,240) = 17.16, p < 0.001) and the in-
teraction between condition and rating type was significant
(F(3,1) = 6.77, p < 0.001). However, in follow-up paired
t-tests, participants in the worsening condition showed a sig-
nificant difference between past and expected future inter-
vention rates, implying some degree of forecasting (t(54) =
−4.80, p < 0.001), but participants in the improving condi-
tion did not (t(64) = 0.38, p = 0.71). Forecasted intervention
rates remained stable for the unreliable and reliable agents,
as we might expect (unreliable: t(66) = −0.10, p = 0.92;
reliable: t(56) = 1.58, p = 0.12).

Critically, forecasted intervention rates reflect participants’
underlying trust in their partner. Predicted intervention rates
(0− 100%) were significantly negatively correlated with re-
sponses on a five-point rating scale question asking how
much participants trusted their partner to catch the ball on a
given trial (Not at all, Slightly, Moderately, Very, Extremely),
r = −0.51, p < 0.001. This highlights the potential role of
expectations about future behavior in our trust in others.

Discussion
In this study, we address the question of how people evalu-
ate an artificial agent’s competence in a collaborative physi-
cal prediction task. Specifically, we investigated how differ-

ences in an agent’s competence impacted people’s decisions
to either trust their partner’s recommendation or intervene to
modify it. The current task expands on prior work by probing
people’s sensitivity to changes in their partner’s ability in a
setting that draws on rich human physical intuitions. Our re-
sults contain several key findings. First, we show that partic-
ipants combine their own physical judgments and the recom-
mendations of their partner. Second, we show that how peo-
ple integrate their partner’s recommendation does not reflect a
simple bias towards their partner’s estimate; people calibrate
how much to defer to their partner based on the prior reli-
ability of their partner’s suggestions. We further show that
this estimate is not static, but rather sensitive to changes in
their partner’s competence over time. In sum, our findings
make headway towards a better understanding of the behav-
ioral underpinnings of trust in artificial agents across repeated
interactions.

The current results raise a number of questions about trust
and evaluations of others’ competence that merit further in-
vestigation. First, how does the information provided by
the agent partner impact task performance relative to learn-
ing without another agent? A comparison of the current re-
sults to people’s behavior in the absence of any form of social
inference will not only provide a baseline for understanding
how people integrate the agent’s behavior while learning, but
could also allow for future work aimed at optimizing the ef-
fectiveness of pedagogical agents.

Second, the current results suggest that people integrate
their own judgment with their partner’s suggestions in a way
that is sensitive to their partner’s ability, but leave largely
unanswered how people evaluate their partner or integrate this
evaluation into their own behavior. Future work should com-
pare computational models that embody distinct hypotheses
concerning the learning mechanisms and/or the relative con-
tributions of social and task-specific information (Pärnamets
& Olsson, 2020). In addition, modifications to the task which
allow for more flexible behavior might improve understand-
ing of the tradeoffs people make in their own decisions when
collaborating with others, e.g., how much to merely imitate
their partner or draw on a richer internal model of their part-
ner’s behavior (Charpentier, Iigaya, & O’Doherty, 2020).

Finally, a promising avenue for future work would be to
further explore the inferences that people draw when other
agents display richly structured patterns of errors in more
complex physical task domains. For example, when do peo-
ple infer that another agent may possess one skill but lack
another when both are needed to successfully perform a phys-
ical task (e.g., aiming a basketball vs. applying enough force
when shooting it)? By providing a more thorough account of
how people infer the underlying mechanisms that give rise to
the behavior of other agents and use these inferences to guide
their own actions, such work can advance our understanding
of the basis of trust and lead to algorithms that support im-
proved collaboration between humans and artificial agents.
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