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Abstract

How do humans adapt when others exploit patterns in their be-
havior? When can people modify such patterns and when are
they simply trapped? The present work explores these ques-
tions using the children’s game of rock, paper, scissors (RPS).
Adult participants played 300 rounds of RPS against one of
eight bot opponents. The bots chose a move each round by
exploiting unique sequential regularities in participant move
choices. In order to avoid losing against their bot opponent,
participants needed to recognize the ways in which their own
behavior was predictable and disrupt the pattern. We find that
for simple biases, participants were able to recognize that they
were being exploited and even counter-exploit their opponents.
However, for more complex sequential dependencies, partici-
pants were unable to change their behavior and lost reliably to
the bots. Results provide a quantitative delineation of people’s
ability to identify and alter patterns in their past decisions.
Keywords: adaptive behavior; exploitation; behavioral game
theory; rock-paper-scissors

Introduction
The ability to counteract scenarios in which others seek to
trap or exploit us is central to adaptive behavior and intel-
ligence. Reasoning in these scenarios forms the basis for
games like squash and chess, in which players must avoid
being placed in situations from which they are unable to es-
cape. However, it also underlies complex decision making
at a larger scale. Spies are taught to avoid giving away pos-
sible signs of their status. A familiar feature of modern IT
trainings involves detecting attempts at “phishing”, in which
a malicious actor obtains login credentials or money through
seemingly benign requests. Such examples highlight two im-
portant features of human adaptive behavior. First, the stakes
of avoiding attempted exploitation can often be high, as when
U.S. Democratic National Committee servers were breached
in 2016 through a phishing campaign, and second, people of-
ten struggle to recognize or counteract exploitative behavior,
whether on a chess board or at the hands of scammers. In
the current work, we attempt to better understand how peo-
ple respond adaptively to exploitative behavior over repeated
interactions, and when they fail to do so.

Though a broad range of behaviors might qualify as ex-
ploitative (e.g., deception), we focus on actions that capital-
ize on a particular regularity or pattern in another’s behav-
ior which makes them predictable. Consider for example the
ways in which software is exploited or, as in the previous ex-
amples, human behavioral tendencies make their responses

in chess or phishing scams more easily anticipated. Here, we
investigate the levels of complexity at which people are able
to represent exploitation by another agent, and how well they
can in turn avoid or even counter-exploit these situations. In
other words, how richly can people represent patterns in their
own behavior which might form the basis for exploitation?
And how easily can they change such behavior?

Prior work on human subjective randomness offers insights
into how people represent and counteract exploitable patterns
in their own behavior. When asked to judge the randomness
of a sequence or produce one themselves, people are sub-
ject to systematic biases which typically cause them to favor
certain sequences over other equally (or more) random ones
(Bar-Hillel & Wagenaar, 1991). To illustrate, when prompted
to produce a sequence of simulated coin flips, people often
produce sequences that (i) have an equal number of heads and
tails, (ii) under-represent “runs” (e.g., HHH) and (iii) over-
represent alternations (HTH) (Lopes & Oden, 1987). This
tendency is so robust that Rapoport and Budescu (1992) note,
“Cognitive psychology has engendered few examples of so
much support for and agreement among researchers about the
prevalence of a cognitive bias.”

A natural question is whether people can counteract such
patterns in their own behavior. In one study, participants who
were repeatedly given feedback about random binary signals
they had generated—using measures of signal strength, alter-
nations, and conditional dependence—eventually produced
sequences that were indistinguishable from computer gener-
ated ones with respect to the measures they had been shown
(Neuringer, 1986). Similarly, studies with Matching Pennies,
a two-player game in which the Nash Equilibrium strategy
(Nash, 1950) is to choose moves randomly, found that in an
adversarial setting, people produced more random sequences
of events than when they were asked to generate individual
sequences of moves (Rapoport & Budescu, 1992; Budescu &
Rapoport, 1994). Finally, analyses of the direction of tennis
serves and soccer penalty kicks suggests that professional ath-
letes are able to produce highly randomized event sequences
(Walker & Wooders, 2001; Palacios-Huerta, 2003).

Broadly, these findings suggest that people can, with cer-
tain levels of feedback or skill, and notably in adversarial set-
tings, counteract robust patterns in their sequential behavior.
Here, we seek a broader, formalized account of how this pro-
cess works. What kinds of behavioral regularities or biases



can people successfully “undo”, and what representational
capacities underlie this process? We analyze behavior in a
domain which has a wider range of behavioral dependencies
or biases than the simple patterns found in subjective random-
ness. In the current study, we explore behavior in the chil-
dren’s game of rock, paper, scissors (RPS). As with Match-
ing Pennies and other mixed strategy equilibrium games, the
equilibrium strategy in RPS is to select moves randomly; any
predictable pattern could be exploited by the opponent. How-
ever, unlike coin flips or Matching Pennies, prior work has
found evidence for an array of sequential regularities in peo-
ple’s decision making in repeated games of RPS. For exam-
ple, people with schizophrenia may be more likely to choose
the Cournot Best Response (Cournot, 1838), i.e., playing the
move which will beat what one’s opponent just played (Baek
et al., 2013). Similarly, prior work has found evidence for
sub-conscious imitation of an opponent when playing the
game in person (Cook, Bird, Lünser, Huck, & Heyes, 2012),
though results are mixed (Aczel, Bago, & Foldes, 2012). The
most widely studied behavioral pattern is win-stay, lose-shift,
a strategy that has applications in game theory (Nowak & Sig-
mund, 1993), reinforcement learning (Erev et al., 2010), and
Bayesian estimation (Bonawitz, Denison, Gopnik, & Grif-
fiths, 2014). Win-stay, lose-shift responding has been ob-
served in RPS play in shuffled groups (Wang, Xu, & Zhou,
2014), and more recent work has explored the basis for this
pattern in adversarial settings (Dyson, Wilbiks, Sandhu, Pa-
panicolaou, & Lintag, 2016). Building on these results, we
have shown in previous work that in repeated games of RPS
with human dyads, people exhibit a range of stable regu-
larities in their move choices, including the ones outlined
above, as well as a number of others combining player pre-
vious moves, opponent previous moves, and previous round
outcomes (Brockbank & Vul, 2020). Notably, these findings
quantify how much people exhibit a particular dependency,
allowing for robust comparison of different ways in which
people display patterned behavior.

The present work leverages these results to investigate how
people respond to exploitation. Given the various regulari-
ties in people’s decision making, which ones can they avoid
or counteract when those dependencies are being exploited?
The results described previously leave these questions unan-
swered, since it cannot be determined from dyad play which
of the dependencies in players’ move choices their opponents
were aware of or were using to determine their own moves.
How then might we expect people to behave when reliable
patterns in their behavior are being exploited? Prior research
on sequence learning and word segmentation suggests that
in some domains, humans are highly sensitive to regularities
in their own and others’ behavior. For example, given re-
peated practice, people can reliably learn patterns consisting
of as many as 10 items in a range of motor and visuospatial
domains (Nissen & Bullemer, 1987; Clegg, DiGirolamo, &
Keele, 1998). In a similar vein, Saffran, Johnson, Aslin, and
Newport (1999) showed that adults and infants are sensitive to

statistical co-occurrence among 11 non-linguistic tones, sug-
gesting that our ability to learn word boundaries recruits more
domain-general pattern learning. If reasoning about patterns
in one’s own or another’s behavior recruits cognitive pro-
cesses like those underlying sequence learning or word seg-
mentation, we might expect people to be responsive to pat-
terns in their actions which lead to exploitation. However, it
is not clear that this ability extends to more abstract decision
making in adversarial interactions like rock, paper, scissors.
Here, we address this challenge by pairing participants with
bot opponents that exploit various behavioral dependencies
observed in human RPS play. We find that people can easily
outwit opponents that exploit some behavioral dependencies,
but that they are reliably beaten when opponents leverage oth-
ers; these differences align closely with the complexity of the
dependencies. In this way, we provide a precise account of
sequential patterns for which people are able to counteract
exploitation, and establish clear limits in people’s ability to
represent and alter regularities in their own behavior.

Experiment
Participants
Participants were 194 undergraduate students who received
course credit for their participation. One participant was
removed because of technical error and a second was ex-
cluded due to clear evidence of not trying (i.e., choosing
the same move to their own detriment in the vast major-
ity of rounds). Participants were randomly assigned to one
of eight adaptive bot conditions, described in further de-
tail below. The experiment was coded following guidelines
for synchronous game play outlined in Hawkins (2015) and
is available along with all data and analyses on github at:
https://www.github.com/erik-brockbank/rps.

Procedure
Participants completed the experiment in a web browser on
their home computers. Participants began by clicking through
a set of instructions explaining the rules of rock, paper, scis-
sors and the format of the experiment. After reading the in-
structions, participants were randomly assigned to play one
of eight bot opponents. Participants were not told anything
about the identity or strategy of their opponent during the in-
structions or during gameplay.

The experiment consisted of 300 rounds of RPS played
against the bot opponent. In each round, participants were
first shown a screen with a clickable “card” illustrating each
move choice, as well as a matching panel used to illustrate
their opponent’s choice once the round was complete. At the
bottom of the screen, an illustration of the rules remained
throughout the duration of the game to avoid any possibil-
ity of moves chosen due to misunderstanding. Participants
had 10 seconds to choose a move each round; a countdown
timer at the top of the screen showed their time remaining. If
participants did not select a move in this time, they lost the
round.



Figure 1: The stages of each rock, paper, scissors round. Top
left: participants had 10s to select their move. Bottom right:
participants were shown the results of each round, along with
updated points for them and their opponent, before clicking
to proceed to the next round.

Once participants had chosen a move, they were immedi-
ately shown the results of that round. Their opponent’s move
was highlighted next to their own, and a message at the top
indicated the outcome, as well as the points awarded to the
participant and their opponent. In each round, the winner re-
ceived 3 points, the loser received -1 point, and in the event
of a tie, both players received 0 points1. After viewing the re-
sults of a given round, participants clicked a button to proceed
to the next round. Once they clicked “Continue”, the next
round began immediately. Throughout the duration of the
experiment, participants were shown their cumulative points
and their opponent’s cumulative points to motivate them to
win over repeated rounds, as well as the current round index
out of 300. The phases of each round are shown in Figure 1.

After completing all 300 rounds against their bot oppo-
nent, participants were taken to a post-game questionnaire.
Here, they were first given a free response prompt which
asked them to describe their strategy (“In the text box be-
low, please describe any strategies you used to try and beat
your opponent”). Then, they were prompted with a series of
statements about their game play and asked to respond on a
seven point Likert scale ranging from Strongly Disagree to
Strongly Agree (for example, “I paid attention to my oppo-
nent’s moves in order to try and predict their next move” and
“There were noticeable patterns in my opponent’s moves that
allowed me to predict their next move”).

To understand how responsive people were to an opponent
that was exploiting patterns in their behavior, we measured
the average win count differential for the bots using each strat-
egy. Each bot’s win count differential is the number of wins
it obtained over 300 rounds, minus the number of wins for its
opponent. The bot’s win count differential in a game provides
a measure of how much the bot was able to exploit its (hu-

1The imbalance in points allocated to wins and losses was chosen
to make the game more engaging for participants, so that even with
an equal number of wins and losses, participants would maintain a
positive score.

man) opponent. Two opponents selecting moves randomly
would each be expected to have a win count differential of
zero; an average win count differential greater than zero indi-
cates that the bot was able to exploit participants successfully.

Adaptive Bot Strategies
Participants were paired with one of eight adaptive bot op-
ponents for the duration of the experiment. Each bot had a
policy of choosing the move that would beat whatever move
they determined was most likely for their human opponent
in the next round. In the event that multiple moves were
considered equally probable, the bot sampled one at random
and chose the move that beat the sampled move2. The bots
differed in how they determined their opponent’s most likely
move each round, relying on distinct sequential dependencies
their opponent might exhibit. To illustrate, a naı̈ve approach
would involve simply tracking the participant’s cumulative
proportion of rock, paper, and scissors choices, then select-
ing a move each round that would beat whichever opponent
move is most likely. A more complex bot might instead track
the ongoing sequences of a participant’s last five moves and
choose the move each round that beats whatever choice is
most probable given the participant’s previous four moves. In
repeated dyadic RPS games with a human opponent, people
exhibit a number of stable dependencies in their move choices
(Brockbank & Vul, 2020). The eight adaptive bots in the cur-
rent experiment each exploited one of the dependencies out-
lined in Brockbank and Vul (2020), choosing their move each
round based on the particular regularity they were exploiting.
We outline each of these bot strategies below.

Transition baserate: A participant’s move in a given
round can be thought of as reflecting a particular transition
from their previous move (Dyson, 2019). Any time they
play a move which beats the previous move (e.g., paper after
rock), this is a “positive” transition or shift up, denoted here
with a +. Meanwhile, any time they play a move which loses
to the previous move, this represents a “negative” transition or
shift down (−), and any time they repeat the previous move,
this is a “stay” transition (0). The Transition baserate
bot tracks participant transitions and chooses the move each
round which beats their opponent’s most likely transition.

Opponent transition baserate: The notion of a transition
between moves can just as easily be described relative to an
opponent’s previous move (Dyson, 2019). The Opponent
transition baserate bot chooses a move based on the
participant’s most likely transition relative to their bot oppo-
nent’s previous move.

Transition given player’s prior choice: This bot keeps
track of 1-back sequential dependencies in player moves:
Does the player tend to play rock after playing paper? This is
similar to the Transition baserate strategy but allows for
the possibility that a participant’s most likely move after rock

2In this way, the bots maximized expected win count, but did not
maximize expected win differential. This means bots were indiffer-
ent between moves that had a 50/50 change of a win or tie, and those
that had a 50/50 chance of a win or loss.



is, e.g., paper (a + transition), but their most likely move fol-
lowing paper may be paper again (a 0 transition). This bot
therefore tracks every sequence of two moves rather than as-
suming that transition rates are independent of prior move.

Transition given opponent’s prior choice: This bot
is identical to the Transition given player’s prior
choice bot, except that it exploits any pattern in participant
move choices based on their bot opponent’s previous move
rather than their own previous move.

Transition given prior outcome: This bot tracks a partic-
ipant’s most likely transitions conditioned on each possible
previous outcome. Win-stay, lose-shift behavior (Wang et al.,
2014; Dyson et al., 2016) will be exploited by this bot.

Choice given player’s prior choice & opponent’s prior
choice: This bot tracks player move choices given each com-
bination of their own and their bot opponent’s previous move.

Choice given player’s prior two choices: This bot
chooses the move which beats their human opponent’s most
likely move given the participant’s move choices in each of
the previous two rounds.

Transition given prior transition & prior outcome: This
bot exploits any dependency participants exhibit on their tran-
sitions each round, given both the outcome of the previous
round and the transition they made in the previous round. For
example, if participants were more likely to shift up after a
round in which they shifted up and won, this bot will detect
such a pattern and exploit it.

Adaptive Bot Complexity
Intuitively, the eight bot strategies described above differ in
the complexity of the behavioral regularity they are exploit-
ing. We formalize the complexity of a bot’s strategy based on
the memory demands of executing it. The simplest transition
bots (Transition baserate and Opponent transition
baserate) need only store and update three counts in mem-
ory: a 1x3 matrix with the number of +, −, and 0 transitions.
Meanwhile, the three intermediate strategies (Transition
given player’s prior choice and Transition given
opponent’s prior choice and Transition given
prior outcome) all maintain a 3x3 (9-cell) matrix of
transition counts based on additional information from the
previous round (i.e., the participant’s previous move, the
bot’s previous move, or the previous outcome). Finally,
the most complex bots (Choice given player’s prior
choice & opponent’s prior choice and Choice given
player’s prior two choices and Transition given
prior transition & prior outcome) rely on a 9x3 (27-
cell) matrix which tracks unique combinations of previous
events (two previous moves or a previous transition and
previous outcome) to choose their moves. While this is not
the only way to formalize the complexity of these strategies,
the memory requirement offers an intuitive description of
why some of the regularities the bots exploit may be easier to
counteract than others. We explore how well the complexity
of a regularity (and the corresponding bot’s strategy) maps
onto people’s ability to adapt to each bot.

Results

At a high level, our results indicate that there is considerable
variance in the degree to which people were able to avoid
exploitation by their adaptive bot opponents. We first show
that bot win count differentials are highly correlated with the
expected win count differentials obtained in Brockbank and
Vul (2020); the extent to which people exhibit a given depen-
dency in dyad play is closely aligned with their (in)ability to
counteract such a pattern when it is being exploited. Next, our
results offer insights into why people are able to recognize and
alter some patterns in their behavior but not others. We show
that increases in bot win count differentials follow increases
in the complexity of the dependency the bots exploit, with cer-
tain complexity levels reliably exploiting human opponents
and others frequently counter-exploited by participants.

Patterns of exploitability against bots align with
dyad play

We first explore whether the dependencies people exhibited
most in dyadic play (Brockbank & Vul, 2020) are in turn the
ones that led to the highest win count differentials for ex-
ploitative bots. While this is an intuitive hypothesis, it need
not be the case; against a stable human opponent, participants
may have exhibited certain dependencies to a greater degree
precisely because their opponents were not exploiting these
dependencies. Without any pressure to disrupt such regulari-
ties, they may have persisted more than they would against an
exploitative opponent. Therefore, it remains an open question
whether the dependencies people exhibited most in dyad play
are the ones they are least able to recognize and counteract.

For a given dependency over move choices, Brockbank
and Vul (2020) calculate an expected win count differential
for each participant based on how much they exhibit that
dependency in game play. This represents an approxima-
tion of how much a hypothetical opponent could be expected
to win if they were to simply maximize against this depen-
dency when playing each participant; the higher the expected
win count differential for a given dependency, the more par-
ticipants exhibited that dependency in dyad play. Figure 2
shows expected win count differentials from Brockbank and
Vul (2020) on x and average win count differentials for each
adaptive bot in our results on y. Each point therefore indi-
cates how successfully the bot opponents were able to ex-
ploit a given dependency, as a function of how much people
exhibited that same dependency in dyad play. The correla-
tion between average expected win count differentials and the
matched average bot win count differentials for each strategy
is 0.958 (t(6) = 8.16, p <0.001). As the amount that people
exhibited a particular dependency in dyad play increases, so
too does the win count differential obtained by exploiting this
dependency. This suggests that people’s tendency to exhibit
some regularities more than others when making strategic de-
cisions extends to their inability to adapt their play when such
regularities are being exploited.



𝑹𝒆𝒑𝒐𝒓𝒕𝒆𝒅 𝒊𝒏 𝑩𝒓𝒐𝒄𝒌𝒃𝒂𝒏𝒌 & 𝑽𝒖𝒍 (𝟐𝟎𝟐𝟎)

Figure 2: Relationship between expected win count differen-
tials from human dyad play reported in Brockbank and Vul
(2020) and bot win count differentials in our data. Each point
represents a behavioral pattern exhibited in dyad play and ex-
ploited by one of the eight bots. The dashed line indicates
chance performance.

In sum, findings from Brockbank and Vul (2020) suggest
that against other humans, people strongly exhibit the depen-
dencies being exploited by adaptive bots in the present exper-
iment. We therefore expect that people’s baseline tendency to
display these biases in the current results will be minimally
different. The question is whether an agent that exploits such
behavioral regularities will lead to adaptive behavior among
participants, or whether they will be unable to modify biases
in their decisions. Results in Figure 2 suggest that indeed, the
more strongly people display a bias in dyadic interaction, the
more that bias can be exploited by a calculating opponent.

Game outcomes predicted by strategy complexity
While the expected win count differentials reported in
Brockbank and Vul (2020) are all positive (reflecting ideal-
istic assumptions about exploitability), a notable feature of
our results is that bot win count differentials straddle the in-
tercept. In Figure 2, expected win count differentials on x lie
roughly between 40 and 90, while average bot win count dif-
ferentials on y range from -50 to 50. For some bots, not only
did participants avoid being exploited by a particular regular-
ity, but they successfully counter-exploited the bot opponent,
giving the bot a negative win count differential. However,
for other dependencies, participants were unable to avoid be-
ing exploited, producing average bot win count differentials
greater than zero. How might differences between the adap-
tive bot strategies account for this variance? Figure 3 shows
average bot win count differentials by strategy, arranged ac-
cording to the memory complexity described previously. Re-
sults illustrate a clear relationship between a bot’s complexity
and whether it was able to exploit its human opponents.

Figure 3: Average win count differentials for each adaptive
bot strategy. Positive win count differentials indicate that the
bots were able to “outsmart” their human opponents. Adap-
tive bot complexity falls into three distinct categories. Bots
exhibit a clear pattern of exploiting more complex human
move dependencies more successfully. Error bars indicate
one SEM. The dashed line indicates chance performance.

First, bot win count differentials are significantly less than
zero for the simplest 3-cell memory bots in blue in Figure 3
(Transition baserate: t(20) = -2.30, p = 0.03; Opponent
transition baserate: t(25) = -6.09, p <0.01). Bot win
count differentials were negative for 17 out of 21 and 22 out
of 26 participants paired with each bot, far fewer than would
be expected by chance (p <0.01 and p <0.001). The only way
to achieve this pattern of results is for participants to discover
a means of counter-exploiting the bot opponents by picking
up on the higher-order dependencies exhibited by the bots as
they adapt to simpler dependencies. These results suggest
that participants reliably recognize and even successfully out-
wit strategies based on the simplest behavioral regularities.

In contrast, the three 27-cell bot strategies which
exploited the most complex dependencies in human
move choices were able to consistently beat their hu-
man opponents, shown in red in Figure 3. Bot win
count differentials are significantly greater than zero for
these strategies (Choice given player’s prior choice
& opponent’s prior choice: t(24) = 2.44, p = 0.02;
Choice given player’s prior two choices: t(19) =
4.36, p <0.001; Transition given prior transition &
prior outcome: t(25) = 5.68, p <0.0001). For the two
bot strategies with the highest win count differentials, only
4 out of 20 and 4 out of 26 participants in each condition had
win count differentials greater than or equal to zero; this is
far fewer than would be expected by chance (p = 0.01 and
p <0.001) and suggests that most people paired with these
bots would not be expected to come out ahead over many
rounds. People are essentially trapped in these complex de-



pendencies, suggesting a clear limit to the regularities they
can recognize and adjust in their own behavior.

Finally, among the intermediate 9-cell memory bots, two
obtained win count differentials which were not significantly
different from zero (Transition given player’s prior
choice: t(23) = -1.63, p = 0.12; Transition given prior
outcome: t(21) = 0.07, p = 0.95) while the third was sig-
nificantly less than zero (Transition given opponent’s
prior choice: t(27) = -3.11, p <0.01). Binomial tests
based on individual win count differentials reflect a similar
pattern. Thus, at these intermediate complexities people can-
not counter-exploit the adaptive bots, but can avoid being
exploited themselves. Even though people show a high de-
gree of exploitability for these dependencies in dyadic play
(Brockbank & Vul, 2020), this level of complexity occupies
an intermediate point at which participants were able to ef-
fectively minimize the degree to which their behavior was ex-
ploited, but could not respond strategically to counter-exploit
bots with this level of sophistication.

Consistent player motivation Are people equally moti-
vated when playing the different types of bots we pit them
against? When paired with other humans, people are suffi-
ciently motivated by the ongoing scores we present to try to
outwit one another (Brockbank & Vul, 2020). However, per-
haps this does not hold when playing against synthetic agents.
In particular, we want to make sure that motivation is consis-
tent across all bot types. Three of the five Likert scale ques-
tions on the post-experiment survey addressed effort and mo-
tivation: (i) I paid attention to my opponent’s moves in order
to try and predict their next move, (ii) I was focused on win-
ning for the entire time I was playing, and (iii) I was trying to
win each round against my opponent. We asked whether re-
sponses on these questions differed as a function of bot strat-
egy. An analysis of variance of these responses as a function
of bot strategy did not find any significant effects (i. F(7, 181)
= 1.64, p = 0.13; ii. F(7, 181) = 0.52, p = 0.82; iii. F(7, 181)
= 0.87, p = 0.53). Thus, while it is perhaps natural that some
participants may have experienced frustration at being con-
sistently beaten by a high complexity opponent, it is unlikely
that this accounts for the results in Figure 3.

Discussion
The current work explores how people respond to an oppo-
nent that seeks to exploit predictable patterns in their ac-
tions. This sort of challenge is central to games like chess
and tennis, but also underlies sophisticated behavior like on-
line scams or negotiations. Specifically, we ask what levels
of patterned complexity people are able to recognize in their
own behavior, and how flexibly they can counteract such pat-
terns to avoid exploitation. To address these questions, we
analyze move choices in the game of rock, paper, scissors
(RPS), a setting in which prior work has found evidence for a
range of sequential regularities in people’s decision making.
Participants played 300 rounds of RPS against one of eight
bot opponents, each of which strategically exploited a unique

dependency found in earlier results (Brockbank & Vul, 2020).
We compare each bot’s average win count differential—their
total wins minus their (human) opponent’s total wins—to un-
derstand what kinds of patterns people can reliably avoid, and
when they are instead trapped by an exploitative adversary.

The bot strategies tested here captured a wide range of
human responses to exploitation; participants were able to
counter-exploit and win reliably against some of the bot
strategies, while consistently losing to others. To explain
these differences, our results offer two novel findings. First,
we show that the extent to which the adaptive bots were able
to successfully exploit regularties in participant responses is
proportional to how much participants exhibited the same
regularities against other people (Brockbank & Vul, 2020).
This suggests that people’s capacity to recognize and alter
patterns in their own behavior may be tied to how much they
exhibit those patterns naturally. Second, we show that the
degree to which people were exploited by a particular depen-
dency is closely aligned with the memory demands of track-
ing that dependency. In other words, the complexity of the
behavioral pattern predicts people’s (in)ability to break it.

While the current results offer novel perspectives on the
ways people respond to exploitation, other interpretations of
these data are worth considering. For one, the complexity of
the dependencies that the bots exploit may be better captured
through other measures; for example, rather than the memory
requirements for representing the underlying dependency, bot
strategies can be classified according to the number of state
variables that are needed, e.g., a player’s previous move, the
opponent’s previous move, or the outcome of the previous
round. Thus, while it is tempting to blame the memory de-
mands associated with tracking a more complicated depen-
dency structure, the fault may just as well lie in processing
constraints on using such structures. In this vein, future work
should pull apart the impact of different complexity variables
in adaptive behavior. For example, a version of the current
task in which the bot’s strategy is visible throughout the ex-
periment would isolate the computations required to respond
and reveal limits in adaptive reasoning while controlling for
the memory complexity of strategy representations.

The findings presented here raise a number of additional
questions about adversarial behavior that merit further in-
vestigation. First, our results suggest that within a partic-
ular complexity level, people vary in their ability to adapt
to exploitation. Notably, across all three complexity levels
in our data, participants were more successful at counteract-
ing dependencies in their opponent’s behavior than their own
past actions (e.g., Opponent transition baserate versus
Transition baserate). As far as we are aware, existing
work on strategic reasoning does not offer a clear explanation
for this pattern. Future work should explore the possible role
of player-relative and opponent-relative dependencies in peo-
ple’s ability to adapt to exploitation. In addition to variabil-
ity within complexity levels, our results show individual vari-
ability within bot strategies, i.e., differential levels of success



responding to a bot’s exploitative behavior. This variability
likely reflects the use of different cognitive strategies across
individuals, for example model-free reinforcement learning
strategies or model-based predictions (Sepahvand, Stöttinger,
Danckert, & Anderson, 2014). Future work might examine
the time course or win patterns against exploitative opponents
to better understand individual strategy differences.

Broadly, the current results speak to the behavioral patterns
people can detect and adjust, and thus might be instructive for
real world settings where people are expected to revise their
behavior to undo potentially complex patterns. For instance,
work in “explainable AI” (Gunning et al., 2019) pursues a
human-legible description of the behaviors that prompted a
particular algorithmic decision, e.g., which aspects of a per-
son’s behavior led to a rejected loan request. The goal of this
criterion is to allow people to respond positively to an adverse
decision by changing their behavior. But what constitutes a
sufficiently simple behavioral explanation for people to adjust
patterns in their actions? While our results cannot provide a
general answer, they suggest limits in the complexity of pat-
terns people can detect and adjust in their own behavior, a key
to successful human-AI interactions.
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