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Abstract
In this study, we investigate people’s ability to predict and
adapt to the behavior of others in order to make plans of their
own, a cornerstone of cooperative and competitive behavior.
Participants played 300 rounds of rock, paper, scissors against
another human player. We investigate the degree to which par-
ticipants are able to identify patterns in their opponent’s be-
havior in order to exploit them in subsequent rounds. We find
strong evidence that participants exploit their opponents over
the course of 300 rounds, suggesting that people identify de-
pendencies in their opponent’s move choices during the game.
Nonetheless, analysis of dependencies across participant move
choices reveals that people exhibit a number of regularities in
their own moves. Based on these dependencies, we argue that
participants are far from optimal in their exploiting, suggesting
that there are substantial constraints on people’s ability to iden-
tify and adapt to patterned opponent behavior across repeated
interactions.
Keywords: adaptive reasoning; adversarial reasoning; non-
cooperative games; rock paper scissors

Introduction
Human conflict and coordination relies on our ability to rea-
son about and predict the behavior of others in order to make
plans of our own. What kind of cognitive processes underlie
this unique ability? In the current experiment, we investi-
gate this question in an adversarial setting which highlights
the ways in which people detect and exploit patterns in an
opponent’s behavior across repeated interactions. We use the
simple game of rock, paper, scissors (RPS) to evaluate the
level at which people are able to flexibly reason about their
opponents in order to maximize their own gain.

RPS is an example of a zero-sum, cyclic dominance game
(Morgenstern & Neumann, 1953); each move choice can be
beaten by another move choice, meaning no move is prefer-
able to any other without some expectation about what the op-
ponent will do. This forces players interacting over repeated
rounds to continually shuffle between moves in a way that
avoids exploitation by their opponent, while seeking any pat-
tern in their opponent’s choices that will give them an upper
hand. Because the game can be played over many rounds
successively and with the same opponent, it allows partici-
pants to detect and adapt to potentially complex patterns in
their opponent’s behavior. Additionally, the game has sim-
ple rules and a constrained space of choices, such that better
performance by one individual in a dyad will not likely be a
result of particular “expertise” but rather a result of better rea-
soning about dependencies in their opponent’s move choices.

For these reasons, RPS provides an ideal setting for asking
questions about people’s ability to reason about and predict
the behavior of others over repeated interactions.

Despite these benefits, little work has examined the cogni-
tive underpinnings of the game and the inferences involved
in playing it successfully. Wang, Xu, and Zhou (2014) ex-
plore whether participants playing RPS in shuffled groups
show behavior closer to the Nash Equilibrium strategy of ran-
dom play (Nash, 1950) or the cyclic behavior predicted by
models of evolutionary stable strategies (Smith, 1982). Im-
portantly for the present work, they suggest that individual
decisions in the game are best characterized according to a
“win-stay, lose-shift” conditional strategy. However, because
players’ opponents were continually shuffled throughout the
game, these results may not predict the ways people reason
about and adapt to the behavior of a stable opponent.

Subsequent studies have found further evidence that peo-
ple’s decisions in repeated RPS games are consistent with
win-stay, lose-shift behavior to varying degrees (e.g., Dyson,
Wilbiks, Sandhu, Papanicolaou, and Lintag (2016); see
Dyson (2019) for review), but these have typically involved
humans playing against randomized bot opponents, which
also leaves open the question of whether such strategies are
effective against an adaptive human opponent, or simply rep-
resent a sort of fallback against opponents that are unex-
ploitable. A number of studies have explored people’s abil-
ity to identify and exploit strategic bot opponents (Stöttinger,
Filipowicz, Danckert, & Anderson, 2014), finding that peo-
ple can adapt to a range of different regularities in opponent
strategy. In the present work, we explore what happens when
people are paired against other humans who may be equally
attentive to particular strategies or behavioral regularities.
While a handful of studies have paired participants against
stable human opponents in the rock, paper, scissors game
(e.g., Baek et al. (2013)), these studies have used the game
to address questions unrelated to the present work, such as
whether people imitate gesture subconsciously (Cook, Bird,
Lünser, Huck, & Heyes, 2012; Aczel, Bago, & Foldes, 2012).

Within the broader class of mixed strategy equilibrium
games, of which RPS is a single example, research involv-
ing stable human dyads has mostly examined whether people
are able to adopt the Nash Equilibrium strategy of random
play over many rounds (for a thorough review, see Camerer
(2011)) but do not specifically explore people’s ability to



adapt to dependencies exhibited by their opponents. More
broadly, cyclic games similar to RPS that can be scaled to
larger groups of players have been used to examine large
scale collective behaviors (Frey & Goldstone, 2013); how-
ever, these findings are mostly concerned with the cogni-
tive underpinnings of group-level behavior rather than adap-
tive reasoning about an individual opponent. Meanwhile, re-
search focused on recursive reasoning about other individuals
over repeated interactions has addressed a number of chal-
lenges, from pragmatics and convention formation (Hawkins,
Goodman, & Goldstone, 2019), to lying and deception (Oey,
Schachner, & Vul, 2019), but does not make specific predic-
tions about how participants will behave in an adversarial set-
ting like the RPS game.

Experiment
In this experiment, we use the simple game of rock, paper,
scissors (RPS) to investigate the degree to which people can
detect patterns in their opponent’s behavior and exploit these
patterns in an adversarial setting.

Participants
Participants were 128 college students who received course
credit for their participation. Participants were assigned to
stable dyads during the experiment (except in two cases
where odd numbers of participants precluded dyad forma-
tion); of 62 dyads, four were removed due to technical is-
sues which prevented their completion of the task, leaving 58
dyads with complete data.

Procedure
Participants began by clicking through a set of instructions
introducing the game of rock, paper, scissors and noting that
they would be playing against a human opponent. Upon com-
pletion of the instructions, participants entered a “waiting
room” where they were matched up into dyads on a first in,
first out basis. Once a participant had been paired up with an-
other participant, they began the RPS game, which consisted
of 300 rounds against the opponent they had been matched
with. In each round, they were shown a set of clickable
“cards” with rock, paper, and scissors icons and instructed
to choose a move. They were given 10 seconds to choose
their move each round1. Once a participant had chosen a
move, they could not change their selection. The first player
to choose a move was taken to a screen that highlighted their
move and instructed them to wait while their opponent se-
lected a card. After both participants had chosen a move, they
were taken to a screen indicating each player’s move, the re-
sults of the round, and the points each player received for that
round. Participants were given 3 points for a win, 0 points
for a tie, and –1 points for a loss. Participants could view the
results of the round for as long as they wanted before clicking
a button to proceed to the next round; only after both partic-
ipants had clicked “Continue” did the next round begin (the
participant who clicked first remained on the results screen
with a message indicating that the next round would begin as

Figure 1: The three stages of each rock, paper, scissors round.
At top left, selecting a move. At middle right, waiting for
opponent after selecting a move (this screen is bypassed if a
player is the last to choose a move). At bottom left, the results
of a round after both players have selected a move.

soon as the other player was ready). A graphic illustrating
the rules (which card beat which) and a tally of rounds com-
pleted and total points for each player were visible throughout
the game. Figure 1 illustrates the phases of each round.

Upon completion of all 300 rounds, participants were di-
rected to a post-game questionnaire. Most participants com-
pleted the experiment in under 30 minutes (mean time from
round one to round 300: 966s, sd: 347s). The experiment
was coded in node.js using socket.io, a popular library for
synchronous game play in web browsers2(Hawkins, 2015).

Results
What results might be expected for dyads playing 300 rounds
of rock, paper, scissors against a stable opponent? The
Nash Equilibrium strategy (Nash, 1950) in repeated play is
to choose moves randomly; any non-random play necessarily
produces patterns which could be exploited by an optimal op-
ponent. Prior research has shown that characteristic patterns
of subjective randomness, which may be highly predictable,
emerge even in adversarial settings where such predictability
is a disadvantage (Budescu & Rapoport, 1994). This sets up
a natural challenge for a player engaged with the same oppo-
nent over many rounds to detect and respond to any patterns
in their opponent’s play. We investigate whether participants
show evidence of such reasoning about their opponents.

How much are people exploiting?
First, we look at game results across dyads to determine
whether participants in our sample were able to capitalize on

1Participants typically chose a move after no more than a few
seconds: average response time across participants was 1,228ms (sd:
642ms).

2The code for this experiment, as well as
the analyses presented here, are available at:
https://github.com/erik-brockbank/rps



dependencies that their opponents exhibited. If participants
were playing randomly and not attempting to exploit their
opponents, they should have an equal number of wins, ties,
and losses on average. However, to the degree that a single
player in a dyad is able to anticipate their opponent’s move
choices, this should allow them to obtain a higher win count
over the course of 300 rounds. Figure 2 shows the empirical
distribution of win count differentials across all 58 dyads: we
take the absolute value of one player’s win count subtracted
from the other’s in each dyad. Overlaid on the same figure is
the distribution of win count differentials that would be ex-
pected if dyads were playing randomly. This null distribution
is generated based on 10,000 samples and approximates the
absolute value of a Gaussian centered at zero.

It’s clear in Figure 2 that the empirical distribution of win
count differentials has a heavier tail than would be expected
under random play. This density at larger win count differ-
entials suggests that many participants were able to exploit
their opponents, thus obtaining more wins over 300 rounds
than would be expected by chance. The empirical distribu-
tion has a mean of 19.26 (SEM: 1.71), compared to the null
distribution’s mean of 11.3; the difference between empirical
win counts and the proportions under the sampled null dis-
tribution is highly significant (χ2 (5) = 133.27, p < 0.001)3.
Additionally, when we truncate the empirical data to remove
the top 10%, 20%, and 30% of win count differentials, the
chi-squared comparison with the sampled null data remains
significant. Therefore the difference between the null and em-
pirical win count differentials is not simply driven by a few
outlier dyads.

The fact that people seem to be exploiting patterns in their
opponents’ behavior as shown in Figure 2 raises a question
about the level at which participants are responsive to depen-
dencies in their opponent’s play. One possibility is that par-
ticipants detect patterns in their opponents’ moves from one
round to the next, i.e., transient dependencies that they are
able to leverage for short periods. A second possibility is that
players are not responsive to their opponents at such a fine-
grained level, but rather are sensitive to aggregate patterns in
their opponents’ move choices which allow them to accrue a
modest but stable advantage.

If players are responsive to transient patterns in their op-
ponents’ moves and are able to exploit these patterns in
short stretches, then we would expect these players to win
in streaks throughout the 300 rounds. These winning streaks
would constitute evidence of one player making a series of
correct predictions about their opponent’s moves before their
opponent is able to notice and perhaps predict what the orig-
inal exploiter is doing. On the other hand, if players are ob-
taining higher-than-expected win count differentials simply
by tracking more stationary dependencies in their opponents’
moves, then we should not expect winning or losing streaks
so much as a pattern of uncorrelated outcomes which lead one

3Chi-squared comparisons remain significant when win count
differentials are binned by all values between 5 and 20.

Figure 2: Empirical and null distributions of win count differ-
entials within dyads. The null distribution is based on 10,000
samples but scaled to match the empirical counts. The em-
pirical distribution has a heavier tail, suggesting that many
players successfully exploited their opponents.

player to have more wins by the end of the game.
To investigate whether participants are able to exploit tran-

sient patterns in their opponents’ move choices, we look at the
auto-correlation of round outcomes over increasing stretches
of game rounds. If a player is more likely to win after a
round in which she has just won, then we expect an auto-
correlation of outcomes at a lag of one round. Figure 3
shows the auto-correlation of round outcomes over increas-
ing game round lags. Each of the green points represents a
single dyad and the dark blue is the average across dyads.
The dashed lines indicate a 95% confidence interval around
a mean auto-correlation of zero. Though there is one dyad
which had a high degree of outcome auto-correlation and
some that approached meaningful correlations at a lag of one
or two rounds, we find very little dependency on previous
outcomes in the full set of dyads. The data are similar when
we examine just those participants who had the highest win
count differentials (i.e., there doesn’t seem to be a relation-
ship between beating one’s opponent more over 300 rounds
and having a substantial auto-correlation of outcomes). This
suggests that people’s ability to exploit their opponents may
not come from detecting short but predictable patterns in their
opponents’ moves, but rather from exploiting overall statistics
in their opponents’ choice probabilities across many rounds.

A natural question that arises from these results is whether
participants were able to detect short-term patterns in their
opponents’ moves that simply fail to meet the threshold for
detection with our auto-correlation measure. To assess the



Figure 3: Auto-correlation of round outcomes for all dyads.
Green points are individual dyads and blue points are the av-
erage across dyads. The dashed lines indicate 95% confi-
dence intervals around a mean of zero. Though individual
dyads show some evidence of correlated outcomes at a lag of
one or two rounds, there is little evidence in aggregate of par-
ticipants exploiting their opponents based on transient move
patterns enough to generate a significant auto-correlation.

sensitivity of the auto-correlation, we simulated 300-round
games of RPS with 1,000 samples, where the outcomes were
uniformly selected but then a subset of those outcomes were
replaced with a k-length streak of wins and a k-length streak
of losses. Though empirical dyad results are unlikely to
have streaks distributed in this way, it provides an idealized
baseline for detecting auto-correlations in win-loss patterns.
We find that when streaks make up 10% of game rounds
above chance (i.e., a 15-round win streak and a 15-round loss
streak), lag-one and lag-two auto-correlation is detected with
greater than 50% power for individual dyads. With streaks
of 20 wins and 20 losses, auto-correlations at a lag of one
and two are detected above 80% power. Finally, with streaks
composing 20% of game rounds above chance, power for in-
dividual dyads is greater than 99% for lags of one, two, and
three and greater than 90% for lags all the way out to 10. This
suggests that participants who are exploiting their opponents
would need as few as 30 streaky wins and losses above what
is expected by chance over the course of 300 rounds to pro-
duce significant auto-correlations at a lag of one; the longer
these streaks, the more likely they achieve significant auto-
correlations at greater lags. Broadly, the auto-correlation
measure is reasonably sensitive to streaky outcomes across
300 rounds of rock, paper, scissors. Therefore, it seems un-
likely that the distribution of win count differentials seen in
our empirical data is fully accounted for by transient, streaky
exploitation of a player’s opponent.

How exploitable are people?

Our initial results show that participants exploit dependen-
cies in their opponent’s move choices more than would be
expected if people were playing randomly, leading to higher
rates of large win count differentials. However, the low auto-
correlation of outcomes across each dyad’s 300 rounds sug-
gests that people may simply be exploiting stable tendencies
in their opponents’ move choices rather than adapting to flex-
ible policies over the course of the game. Does this behavior
reflect participants extracting as much of a pattern as their op-
ponents reliably display? Or do people have rich dependen-
cies in their move choices that their opponents fail to detect?

To address whether participants are exploiting optimally,
we examine how exploitable they are to begin with. Based
on the statistical dependencies that a player exhibits in their
move choices, an optimal opponent can choose moves to
maximize the expected win count differential obtained by
leveraging those dependencies. Intuitively, if a player tends to
favor “rock” over “paper” and “scissors”, their opponent has
a higher expected win count differential over many rounds by
choosing “paper” more frequently. Critically, the maximum
expected win count differential for a given player’s opponent
depends on which statistical dependency the opponent aims
to exploit: the player’s move probabilities given their previ-
ous move may yield a different expected win count differen-
tial than move probabilities given their previous five moves.
Whichever of these is more predictive will produce a higher
maximum expected win count differential each round.

Formally, let a dependency structure X represent the set of
possible prior events that influence a player’s move probabil-
ities; for instance, consider a previous-move dependency in
which a player’s (very exploitable) opponent chooses rock,
paper, or scissors based simply on whether their last move
was rock, paper, or scissors: X designates the full set of
possible previous move states. Let p(i | x) be the proba-
bility that the player’s opponent chooses a particular move
i ∈ {“rock”,“paper”,“scissors”} following some history of
play x ∈X. If X = {} then p(i | x) is simply the average prob-
ability of the opponent choosing each move; if X encodes
more complicated dependency structures, e.g., the opponent’s
previous move, then p(i | x) could indicate the probability of
a move i given the opponent’s previous move (in this case x
would indicate whether the previous move was rock, paper,
or scissors). Next, let v(i, j) ∈ {−1,0,1} be the outcome of
playing a particular move j against the opponent’s move i: in-
creasing the player’s win count by 1, decreasing by 1, or tying
for a change of 0. A player has an expected win count differ-
ential for a particular move j which is defined over all possi-
ble moves i that their opponent might play. We can define a
player’s expected win count differential by choosing move j
in a game round following a particular history x by averaging
over all possible opponent moves i: ∑i p(i | x) · v(i, j). For
each possible prior event history x ∈ X (e.g., each possible
opponent previous move), a player has a move j∗x that max-
imizes the expected win count differential over all possible



opponent moves i:

j∗x = argmax
j

(
∑

i
p(i | x) · v(i, j)

)
. Using this expression, we compute the expected win count
differential for optimal play each round by averaging over all
possible history outcomes x ∈ X that might occur in a partic-
ular round:

1
|X| ∑x∈X

∑
i

p(i | x) · v(i, j∗x)

. This is the maximum expected win count differential a
player obtains each round by assuming the opponent will
choose their moves according to the dependency encoded in
X. By multiplying this by 300, we get a player’s expected
win count differential with optimal play (against dependency
X) for a full game of 300 rounds. Importantly, this pro-
vides a measure of how much participants could plausibly
be exploited by a given dependency in their move choices:
the more a player exhibited a particular dependency in their
moves, the higher the maximum expected win count differen-
tial against that dependency.

To understand the degree to which participants exhibited
patterned regularities in their behavior, we compute maxi-
mum expected win count differentials for each participant
based on various dependencies in their move choices. Fig-
ure 4 shows empirical win count differentials, the sampled
null win count differential described previously, and maxi-
mum expected win count differentials (averaged across par-
ticipants) for eight unique statistical dependencies in partici-
pant behavior. We review each of these below.

Expected win count differentials for move distributions
The most intuitive dependency people might exhibit is in their
distribution over moves given various combinations of their
own and their opponent’s previous moves. In Figure 4, we
examine maximum expected win count differential based on
five dependencies players exhibit in their move distributions
(the other three dependencies in Figure 4, which are not re-
flected in move distributions, are discussed in the next sec-
tion). If players display a bias towards particular moves given
any of these dependencies, this will increase the maximum
expected win count differential based on that dependency.
Choice baserate (R/P/S) indicates each player’s over-

all distribution of moves.
Choice given player’s prior choice indicates each

player’s distribution of moves given their own previous move.
Choice given opponent’s prior choice indicates

each player’s distribution of moves given their opponent’s
previous move.
Choice given player’s prior two choices indi-

cates each player’s distribution of moves given their own
previous two moves.
Choice given player’s prior choice &

opponent’s prior choice indicates each player’s

Figure 4: Win count differentials for empirical data, sam-
pled null data representing random behavior, and maximum
expected win count differentials exploiting various dependen-
cies in participant move choices and transitions. Error bars
indicate one SEM.

distribution of moves given the combination of their own
previous move and their opponent’s previous move.

Together, these dependencies represent a range of ways
in which a player might be more predictable in virtue of
their move choices being conditionally dependent on com-
binations of prior moves. Several notable findings emerge
from the expected win count differentials for each of these
dependencies in Figure 4. First, the expected win count dif-
ferential using each player’s overall distribution of moves
(Choice baserate (R/P/S)) is already larger than the em-
pirical average win count differential. This suggests that
noticing a dependency on overall move probabilities may
have been sufficient for winning players to exploit their op-
ponents in some of the dyads which had higher than ex-
pected win count differentials. Next, it’s clear in Figure 4 that
while participants do exhibit some dependency on their oppo-
nent’s previous move (Choice given opponent’s prior
choice), they exhibit a greater dependency on their own
previous move (Choice given player’s prior choice).
This suggests that while participants are likely attending to
what their opponents do at some level, their move choices
may be based far more on their own previous moves. Fi-
nally, we note that among the best predictors of a player’s next
move in our data are the player’s previous two moves in com-
bination (Choice given player’s prior two choices)
and the player’s previous move along with the opponent’s
previous move (Choice given player’s prior choice
& opponent’s prior choice)4. The large expected win
count differential for these two dependencies suggests that
a player who tracks their opponent’s previous two moves or
their opponent’s previous move and their own previous move



Figure 5: The “transitions” possible between a player’s pre-
vious move and their next move. These can also be viewed as
transitions relative to the opponent’s previous move.

has a significant opportunity to exploit their opponent, though
it is unclear to what degree participants in the game used this
information to obtain higher win count differentials.

Expected win count differentials for transition distribu-
tions While the intuition that people show statistical depen-
dency on previous moves in their own move choice is straight-
forward, previous work has argued that people playing re-
peated games of RPS show evidence of more sophisticated
strategies, such as win-stay, lose-shift (Wang et al., 2014), a
policy that can be used to approximate Bayesian inference
(Bonawitz, Denison, Gopnik, & Griffiths, 2014). This would
involve playing the same move after a win but switching in a
reliable direction after a loss. Move choices can be thought
of as having directionality by considering transitions between
moves: a “positive” shift involves playing paper after rock,
scissors after paper, and rock after scissors while a “nega-
tive” shift moves in the opposite direction: see Figure 5 for
a full schematic of RPS transitions. A sophisticated player
might follow a pattern of transitions given previous outcomes
or transitions, rather than having a stationary dependency on
their previous moves. Critically, transitions can be relative to
a player’s own previous move (e.g., playing the move that will
beat what they just played) or their opponent’s previous move
(e.g., playing the move that will beat what their opponent just
played). We consider both forms of transition below.

In Figure 4, we examine three possible dependencies which
might impact people’s transition probabilities from one move
to the next5. As in the previous section, the more predictable
a player’s move transitions are based on these dependencies,
the higher the maximum expected win count differential an
optimal opponent obtains by leveraging these dependencies.

4The expected win count differential for the opponent’s previous
two moves is lower than these two dependencies so we have omitted
it from Figure 4.

Opponent transition baserate (+/-/0) indicates
the overall distribution of transitions, i.e., how often players
shift up (+), down (−), or stay (0) relative to the opponent’s
previous move.
Transition baserate (+/-/0) indicates the overall

distribution of transitions, i.e., how often players shift up (+),
down (−), or stay (0) relative to their own previous move.
Transition given prior outcome (W/L/T) indicates

the distribution of transitions (+, −, 0) given a player’s pre-
vious outcome (win, loss, tie). A win-stay, lose-shift depen-
dency would be exhibited at this level, but many different
outcome-dependent transitions are possible.
Transition given prior transition & prior

outcome indicates the distribution of transitions given a
player’s previous outcome and previous transition. As
an example, a player might be more likely to shift up (+
transition) if they won on the previous round by shifting up.

Expected win count differentials for transition dependen-
cies, compared to move dependencies, reveal a number of
interesting results. First, we note that the distribution of
overall transitions (Transition baserate (+/-/0)) yields
less exploitable signal than the distribution of moves given a
player’s previous move, despite the fact that both of these
rely on the same information. This suggests that people’s
dependencies on their previous moves do not boil down to
simple transition dependencies but are more complex. As
with the move dependencies, people are more exploitable
on the basis of transitions made relative to their own previ-
ous move (Transition baserate (+/-/0)) than relative
to their opponent’s previous move (Opponent transition
baserate (+/-/0)), once again suggesting that people may
be more likely to draw on their own past history when choos-
ing moves rather than their opponent’s. Next, we note that
the expected win count differential for a player’s transition
given their previous outcome (Transition given prior
outcome (W/L/T)) is larger than the dependencies partici-
pants exhibit on their previous move or their opponent’s pre-
vious move. The fact that participant transitions are fairly
predictable based on their previous round outcome provides
suggestive evidence in line with prior work that a strategy
like win-stay, lose-shift may be widely used, whether inten-
tionally or unwittingly (Wang et al., 2014). Finally, Fig-
ure 4 shows the largest expected win count differential for
the distribution of transitions given the player’s previous out-
come and previous transition (Transition given prior
transition & prior outcome). This may indicate that
people’s tendency towards policies like win-stay-lose-shift
are subservient to more complex (but ultimately more pre-
dictable) policies based on previous outcome and previous
transition. While it is unclear from our empirical dyad results
whether participants exploited such dependencies in their op-
ponents (even partially or transiently), our data suggest that
people are highly exploitable at this level of dependency.

5As in the previous section, we omit dependencies from these
results which do not have theoretically interesting results.



Discussion
In this experiment, we investigate people’s ability to plan and
reason about others in an adversarial setting using the sim-
ple game of rock, paper, scissors, a game that makes it pos-
sible for players to detect and exploit a variety of patterns
in their opponent’s behavior. We find strong evidence that
participants did indeed exploit their opponents beyond what
would be expected by chance or random play. However, we
find little evidence that such exploitation occurs at the level of
transient patterns in opponent moves. Rather, outcome auto-
correlations are more consistent with players tracking high
level dependencies in their opponents’ moves. This raises
the question of whether participant choices reflect optimal
exploitation of their opponents. By comparing the empiri-
cal distribution of win count differentials across dyads to the
maximum expected win count differential for various statisti-
cal dependencies in people’s move choices, we find that opti-
mal exploitation of people’s move selections based on their
previous moves and outcomes would produce much larger
win count differentials than we see empirically.

However, this does not imply that people entirely fail to ex-
ploit the dependencies in their opponents’ move choices that
we examine here. Instead, it suggests that people’s ability to
detect regularities in their opponents’ behavior is limited to a
smaller range of patterns or biases in their opponents’ move
choices. This raises several intriguing questions which we
hope to explore in future work. First, what are the set of pat-
terns and biases that a person can optimally exploit in their
opponent’s move choices over many rounds of RPS? Sec-
ond, what sorts of cognitive limitations prevent people from
learning more complex dependencies exhibited by their oppo-
nents? Is such learning simply constrained by working mem-
ory for past moves and outcomes? Or is it that people lack the
ability to abstract over previous moves and outcomes in a way
that would allow them to recognize patterns such as win-stay,
lose-shift? Or, is it simply that participants are fairly optimal
learners but they do not get enough data over the course of
300 rounds of RPS to strongly differentiate between various
strategies their opponents might be using?

Future work exploring these questions has ramifications far
beyond the simple game of rock, paper, scissors. Our ability
to compete and coordinate with others relies on a fundamental
ability to predict what others will do next in order to plan
our own actions accordingly. In many cases, this involves
drawing on knowledge from past interactions and building
abstractions over the sorts of strategies or motivations that
governed past actions to make optimal predictions. A better
characterization of the pattern recognition, abstraction, and
learning processes underlying this ability will allow for an
increased understanding of how humans so effortlessly work
alongside each other in many domains.
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