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Abstract 

Data visualizations play a crucial role in communicating patterns in quantitative data, making data visualization 
literacy a key target of STEM education. However, it is currently unclear to what degree different assessments of data 
visualization literacy measure the same underlying constructs. Here, we administered two widely used graph com-
prehension assessments (Galesic and Garcia-Retamero in Med Dec Mak 31:444–457, 2011; Lee et al. in IEEE Trans Vis 
Comput Graph 235:51–560, 2016) to both a university-based convenience sample and a demographically repre-
sentative sample of adult participants in the USA (N=1,113). Our analysis of individual variability in test performance 
suggests that overall scores are correlated between assessments and associated with the amount of prior coursework 
in mathematics. However, further exploration of individual error patterns suggests that these assessments probe 
somewhat distinct components of data visualization literacy, and we do not find evidence that these components 
correspond to the categories that guided the design of either test (e.g., questions that require retrieving values rather 
than making comparisons). Together, these findings suggest opportunities for development of more comprehensive 
assessments of data visualization literacy that are organized by components that better account for detailed behavio-
ral patterns.
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Significance statement
Data visualizations are indispensable for communicat-
ing patterns in quantitative data. However, while several 
test-based measures of data visualization literacy exist, 
there is not yet clear agreement on what the key com-
ponents of data visualization literacy are and how to 
measure them. In this study, we administered two widely 
used assessments of data visualization literacy to multi-
ple diverse groups of US adult participants. Participants 
who performed well on one assessment also generally did 
so on the other, suggesting some degree of convergence 
between these two measures. Moreover, performance 

on the combined assessment was associated with how 
much formal education in mathematics an individual 
had received, a measure of their convergence with other 
measures of quantitative literacy. However, it was less 
clear what underlying components of data visualiza-
tion literacy these assessments measure. While it seems 
natural to assume that the ability to answer any question 
correctly on this assessment would be predicted by the 
type of graph shown or the type of question being asked, 
we used tools from machine learning to discover a small 
(and different) set of latent factors that could explain 
these patterns much more effectively. These findings lay 
the groundwork for future efforts to characterize what 
aspects of data visualization literacy these latent factors 
represent and to develop improved and unified measures 
of data visualization literacy.
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Introduction
Data visualizations—also commonly known as graphs, 
charts, and/or plots—provide a powerful and versatile 
medium for reasoning about data (Bertin, 1981; Tufte, 
1983; Wilkinson, 2012). They do so by leveraging color, 
shape, size, position, and other visual variables to convey 
quantitative patterns and relationships that might oth-
erwise be difficult to discern when inspecting raw data. 
Although a relatively recent invention (Playfair, 1801; 
Spence, 2006), data visualizations are now vital for com-
munication both among scientists and between scientists 
and members of the general public (Börner et  al., 2019; 
Franconeri et al., 2021). As such, the ability to use visu-
alizations to explore and reason about data is a key prior-
ity in STEM education (Council, 2014; Garfield and Gal, 
1999).

However, a key challenge to successfully addressing this 
priority is a clear definition of what specific competen-
cies are constitutive of the ability to use data visualiza-
tions effectively. This ability, often termed “visualization 
literacy,” encompasses a broad suite of skills involved in 
the process of linking questions about data (which are 
often not inherently visual in nature) to visual patterns 
in graphical representations of those data (Friel et  al., 
2001; Shah and Hoeffner, 2002; Brehmer and Mun-
zner, 2013; Boy et al., 2014; Börner et al., 2016; Creamer 
et  al., 2024; Hedayati et  al., 2024). Visualization literacy 
has been operationalized in a number of different ways 
across disciplinary contexts, including in education (Friel 
et  al., 2001; Shah and Hoeffner, 2002; Maltese et  al., 
2015; Börner et  al., 2019), cognitive psychology (Boy 
et al., 2014; Padilla, 2018), human–computer interaction 
(Brehmer and Munzner, 2013; Lee et al., 2016), and pub-
lic health (Galesic and Garcia-Retamero, 2011; Ancker 
et al., 2006; Padilla et al., 2022).

While much of the existing work on visualization lit-
eracy focuses on the ability to understand formal data 
visualizations, other lines of work have explored the abil-
ity to design new visualizations (Alper et al., 2017; Berg 
and Smith, 1994; Bishop et  al., 2019) or use an existing 
visualization to make a sound decision (Ruginski et  al., 
2016; Price et  al., 2016). Measures of data visualization 
understanding are especially important because these 
comprehension skills are foundational for more com-
plex activities, such as visualization design and decision-
making with visualizations (Börner et al., 2019; Hedayati 
et al., 2024). Moreover, reliable and valid measures of data 
visualization literacy are critical for evaluating the suc-
cess of any educational intervention intended to improve 
visualization literacy skills. Finally, reliable measure-
ment is crucial for developing cognitive theories of data 
visualization literacy—that is, theories of how graphs are 
mentally represented that explain why people find some 

questions about them easier to answer than others, as 
well as how the ability to understand graphs develops 
over time (Pinker, 1990; Shah and Hoeffner, 2002; Padilla, 
2018; Padilla et al., 2018).

Generally speaking, an individual’s ability to read and 
interpret a data visualization is assessed using a sequence 
of test items, each one posing a question and providing 
a data visualization to answer it. While there are cur-
rently several assessments that adopt this general strategy 
(DelMas et al., 2005; Galesic and Garcia-Retamero, 2011; 
Maltese et  al., 2015; Boy et  al., 2014; Lee et  al., 2016; 
Börner et  al., 2016; Garcia-Retamero et  al., 2016; Okan 
et  al., 2019; Pandey and Ottley, 2023; Ge et  al., 2023), 
they define and operationalize the component skills in 
different ways. For instance, some assessments group 
items into a compact hierarchy of abstract abilities, pro-
gressing from “reading the data” to “reading beyond the 
data” (Galesic and Garcia-Retamero, 2011; Friel et  al., 
2001). Others group items into a broader set of tasks that 
do not necessarily imply strong dependencies between 
them, such as finding extreme values or making compari-
sons (Lee et al., 2016; Pandey and Ottley, 2023; Boy et al., 
2014). Still others focus on the ability to overcome inten-
tionally misleading data visualizations (Ge et  al., 2023) 
or misconceptions about distributions that are com-
mon among students enrolled in introductory statistics 
courses (DelMas et al., 2005).

But because these assessments have not been com-
pared directly, it is unknown to what degree they con-
verge with one another or imply the same decomposition 
of data visualization literacy into underlying skills. As 
such, it remains unclear on what basis any given assess-
ment should be preferred to provide the most reliable and 
valid measure of data visualization literacy. To address 
this gap, here we compare two widely used assessments 
that measure data visualization literacy in distinct ways: 
The 13-item assessment developed by Galesic and Gar-
cia-Retamero (2011), which we refer to as GGR , and the 
53-item Visualization Literacy Assessment Test (VLAT; 
Lee et al. (2016)). We focused on these two assessments 
because, at the time this work was being conducted, they 
were among the most influential measures of data visual-
ization literacy that could also be combined into a single 
assessment that could be administered in one session.

The items in GGR are organized into a three-level hier-
archy of skills (Friel et al., 2001): “Level 1: Read the Data” 
(i.e., finding specific values in a graph); “Level 2: Read 
Between the Data” (i.e., comparing values in a graph); and 
“Level 3: Read Beyond the Data” (i.e., extrapolation). On 
the other hand, the items in VLAT are organized into a 
suite of eight skills (Brehmer and Munzner, 2013; Amar 
et  al., 2005): retrieving a value, finding extreme values, 
finding anomalies, making comparisons, determining a 
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range, finding correlations and trends, characterizing dis-
tributions, and finding clusters.

We administered both assessments to a large and 
diverse sample of adult participants in the United States 
(USA). Our analyses of task performance were guided 
by three objectives. First, to characterize performance 
on the assessments across different sample demograph-
ics, as well as to estimate the association between per-
formance on these assessments and the amount of prior 
coursework in mathematics. Second, we investigated the 
degree to which these two assessments produced conver-
gent estimates of overall data visualization literacy levels, 
despite having been designed in different ways. Third, we 
sought to measure how well individual variability in test 
performance could be explained by the skill-based cat-
egories used to design each assessment. Taken together, 
this study offers empirical insights that serve as a foun-
dation for the future development of more comprehen-
sive and well-validated assessments of data visualization 
literacy.

Method
Participants
A total of 1,176 participants were recruited: 726 were 
students recruited from the University of California, San 
Diego study pool (211 male; mean age=21). 450 adults 
were recruited using Prolific to obtain a sample that is 
demographically representative of the USA based on 
age, sex, and ethnicity (206 male; mean age=45). This 
total sample size is comparable to the study reported in 
Galesic and Garcia-Retamero (2011), which included 
987 participants, and larger than the sample initially 
recruited in Lee et  al. (2016), which included 46 par-
ticipants. All participants provided informed consent in 
accordance with the University of California, San Diego 
IRB. Participants were excluded for failing to complete 
the full assessment and the post-experiment survey of 

demographics and prior math experience, as well as for 
any technical issues reported in the post-experiment sur-
vey which prevented them from answering the questions. 
Unless otherwise indicated, we report results from ana-
lyzing the combined sample after exclusions (N=1,113 
participants; US university sample: N=714 participants; 
US general public: N=399 participants).

Materials
Two assessments were included in our study: GGR  
(Galesic and Garcia-Retamero, 2011) and VLAT (Lee 
et al., 2016); see Fig. 1A.

GGR  is a 13-item assessment containing eight graphs: 
three bar charts, one pie chart, three line plots, and one 
icon array (Fig. 1A, left). All items were assigned by the 
test developers to three categories: Level 1: Read the 
Data, Level 2: Read Between the Data, and Level 3: Read 
Beyond the Data. However, not all graph types were 
paired with all three types of questions. Nine items were 
fill-in-the-blank questions, and four were multiple-choice 
questions with three response options. It was possible 
to skip any multiple-choice question, but not fill-in-the-
blank questions, following the original test administra-
tion procedure. For all but one of the fill-in-the-blank 
items, it was necessary to provide a response that exactly 
matched the correct answer to be counted as correct; for 
the remaining item, the test developers allowed responses 
that fell within a range (i.e., between 23 and 25).

VLAT is a 53-item assessment containing 12 graph 
types: line chart, bar chart, stacked bar chart, 100% 
stacked bar chart, pie chart, histogram, scatter plot, bub-
ble chart, area chart, stacked area chart, choropleth map, 
and tree map (Fig. 1A, right). These items were assigned 
by the test developers to eight question types: retrieve 
value, find extremum, find anomalies, make comparisons, 
determine range, find correlations/trends, characterize 
distribution, and find clusters. There were 16 true-false 

Fig. 1 A The current study investigates two assessments of data visualization literacy: GGR (Galesic and Garcia-Retamero, 2011) and VLAT (Lee 
et al., 2016). B The combined assessment was administered to two groups of participants: A US university sample recruited using a study pool 
and a US demographically representative sample recruited using an online crowdsourcing platform
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items; the remaining 37 multiple-choice items contained 
either three options (3 questions) or four options (34 
questions). It was possible to skip any question.

Procedure
Participants completed the two assessments in a rand-
omized order during a single session (see, Fig.  1B), and 
each assessment was administered in a manner as simi-
lar to the original procedure as possible. Participants 
could spend as much time on each assessment as needed. 
Afterward, they completed an optional post-study ques-
tionnaire that asked about their sex, age, ethnicity, and 
level of educational attainment. The possible responses 
to the educational attainment item were: “Have not 
graduated high school,” “High school graduate, diploma 
or equivalent,” “Associate degree,” “Bachelor’s degree,” 
“Master’s degree,” “Professional degree (e.g., M.D., J.D.),” 
“Doctoral degree (e.g., Ph.D.).” To obtain a proxy for the 
amount of prior mathematics knowledge participants 
had, which is especially relevant for tasks involving rea-
soning about data visualizations, we also prompted par-
ticipants to indicate how many of the following high 
school-level math courses they had previously taken: 
algebra, calculus, and statistics.

Statistical analyses
Overall, our statistical analyses aim to disentangle differ-
ent potential sources of variation in how well participants 
performed on these assessments. The primary tool we 
use for this is linear regression, and the primary factors 
we consider are the type of graph used in an item, the 
type of question asked, prior mathematics knowledge, 
as well as the population from which participants were 
recruited (i.e., university study pool vs. demographically 
representative sample of US crowd workers). To con-
textualize the degree to which these factors account for 
the explainable variance in these data, we additionally 
conducted exploratory factor analysis to infer the latent 
components that best predict participants’ individual 
patterns of correct and incorrect responses. Below we 
describe the details of the statistical analysis strategy we 
use toward these ends.

Linear models
We construct linear models to test the reliability of the 
association between several different variables of inter-
est (i.e., graph type, question type, number of math 
courses, group membership) and test performance. We 
use nested model comparison because it provides a uni-
fied framework for hypothesis testing that generalizes 
beyond the narrower set of use cases that traditional 
hypothesis tests (e.g., t-tests, ANCOVA) were designed 
to independently handle. Specifically, to estimate the 

strength of the relationship between each predictor vari-
able of interest and test performance, we fit mixed-effects 
logistic-regression models to predict accuracy from that 
predictor variable, modeled as a fixed effect, and include 
random intercepts for each participant. We use logistic 
regression to predict the binary outcomes for individual 
items (i.e., correct vs. incorrect) because it provides more 
accurate estimates than using ordinary least squares 
regression to predict the proportion of correct responses 
across a set of items. To assess the explanatory value of 
any given predictor variable, we then use nested model 
comparison to determine how much more variance in 
performance could be explained when that variable was 
included in the linear model than when it was omitted 
(i.e., the baseline model), accounting for the increase in 
model complexity when the variable was included. We 
implement these analyses using the lmer package in R 
(Baayen et al., 2008; Bates et al., 2015) and report χ2 sta-
tistics, degrees of freedom, and p-values for each model 
comparison. The coefficient and standard error estimates 
accompanying these models can be found in the Supple-
mental Materials.

Exploratory factor analysis
To investigate latent structure within and between 
assessments that was predictive of test performance, 
we employed exploratory factor analysis (EFA). EFA is a 
widely used dimensionality reduction method to uncover 
the set of latent factors that underlie observable patterns 
in data (Briggs and Cheek, 1986; Haig, 2005; Cowen and 
Keltner, 2017; Eisenberg et al., 2019). We apply EFA to the 
combined assessment in two ways. First, as a tool to infer 
how many factors are needed to account for the patterns 
of correct and incorrect responses generated by different 
participants. Second, we adopt the same formalization to 
compare existing methods of decomposing assessment 
items (by question type, graph type, and test) to explain 
the same error patterns.

To fit a factor model, each response on the combined 
assessment is modeled as a linear combination of latent 
factors and measurement error: X − µ = LF + ǫ , where 
X is an m (number of test items: 66) x n (number of par-
ticipants) binary matrix of observed errors and µ is a 
matrix containing the mean score for each item. L is the 
m x f (number of factors) loading matrix, an estimate of 
how much each item contributes to each latent factor, 
and F is the f x n matrix of factor scores, an estimate of 
how much each participant’s responses are predicted by 
each factor. ǫ represents measurement error, variance left 
unexplained by the latent factors.

We first apply EFA to the combined assessment to 
estimate the number of latent factors needed to account 
for error patterns while minimizing extraneous factors. 
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Adding more factors improves prediction accuracy, but 
this often comes at a cost of interpretability. Researchers 
have proposed several methods for selecting the number 
of factors that best balances this trade-off in a particu-
lar set of data (Preacher et  al., 2013). We use Bayesian 
Information Criterion (BIC) to identify a minimal set 
of factors that account for individual patterns of error 
(Schwarz, 1978). We then compare this latent factor 
model to several idealized factor models based on graph 
type, question type, and test.

Rather than estimate the loading matrix L from par-
ticipants’ responses, our idealized factor models specify 
a loading matrix based on known decompositions of 
the assessment items. For example, the idealized load-
ing matrix encoding question type information is a 66 x 
11 (number of question types) matrix with binary values 
in each column encoding whether the item in each row 
belonged to that question type. This specification of L 
embodies the possibility that all of the items that involve 
the same question type “hang together” to explain error 
patterns, i.e., an individual who knows how to perform 
the operation for a particular question type is predicted 
to get all of those items correct or all of those items 
incorrect. In addition, encoding each item’s question 
type independently in the loading matrix L allows for the 
possibility that different question types are entirely inde-
pendent of one another, i.e., an individual who knows 
how to perform one question type task is not more likely 
to be able to perform another. Critically, structuring the 
loading matrix in this way does not enforce such inde-
pendence on the idealized factor models. The idealized 
factor models are derived by estimating the factor scores 
F given an idealized loading matrix L—in this way, sys-
tematic patterns in participants’ responses that arise 
from, e.g., similarity across different question types can 
be expressed in the factor scores assigned to participants 
for those question types. Our analyses focus on how well 
idealized models with “manually” encoded loading matri-
ces and freely varying factor scores are able to predict 
participants’ responses.

We compare the performance of our fitted latent fac-
tor model to idealized factor models encoding test, ques-
tion type, and graph type information. Each factor model 
predicts individual responses on all 66 assessment ques-
tions. These predictions can be compared to the actual 
responses to produce a vector of prediction errors for 
each participant. We calculate each participant’s mean 
squared error (the average of item-level squared errors 
for each participant). The average of all participant mean 
squared error (MSE) values for a given model provides 
a group-level MSE value for that factor model, allowing 
us to compare models according to their overall predic-
tive accuracy. For the latent factor model, which does not 

specify a particular factor loading matrix in advance, we 
obtain this MSE estimate using fivefold cross-validation. 
We fit a separate factor model to each set of training data 
folds, then use the loading matrix from the training set to 
estimate a factor score matrix for the held-out data. This 
model is used to then predict individual responses in the 
held-out data. The group-level MSE value for this model 
is calculated based on the held-out prediction error for 
each participant. This ensures that evaluation of model 
performance is always based on splits of the data that are 
independent from those used to fit the latent factor mod-
el’s loading matrix.

Confidence intervals
To provide quantitative estimates of effect size, we report 
95% confidence intervals (CIs) for various quantities 
of interest (e.g., average test performance). Where we 
have used linear models to fit the data, these confidence 
intervals were constructed using estimates of stand-
ard error based on the linear model itself. Estimates of 
mean squared error (MSE) for predictions made by our 
exploratory factor analysis model are calculated with 
bootstrap resampling methods, which have the advantage 
of not depending on parametric assumptions about the 
sampling distribution of the statistic (Efron and Tibshi-
rani, 1994). This approach entailed resampling N=1,113 
individual participant MSE values with replacement and 
calculating a group-level MSE value from this sample. We 
repeated this process 10,000 times to estimate a sampling 
distribution of group-level MSE values from which the 
2.5th and 97.5th percentile values could serve as confi-
dence interval endpoints.

Results
Our analyses1 were guided by three main objectives. 
First, we sought to estimate differences in performance 
on the combined assessment between groups of partici-
pants, depending on how they were recruited and how 
much prior coursework in mathematics they had com-
pleted, providing initial insights into potential sources of 
variability in performance across individuals. Second, we 
assessed how strongly performance on one assessment 
was associated with performance on the other, providing 
a preliminary measure of these two assessments’ conver-
gent validity. Third, we evaluated how well variability in 
performance could be explained by the skill-based cat-
egories used to group items in each assessment, such as 
which type of graph was presented or what type of ques-
tion was being asked. We compared the predictive value 

1 All data, along with analysis scripts used to generate the current results, 
are publicly available at the following GitHub repository: https:// github. 
com/ cogto olslab/ visua lizat ion_ liter acy_ conve rgent_ valid ity.

https://github.com/cogtoolslab/visualization_literacy_convergent_validity
https://github.com/cogtoolslab/visualization_literacy_convergent_validity
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of  these skill-based categories to that of an alternative 
data-driven decomposition, providing a principled way of 
assessing the reliability of these categories based on their 
ability to predict individual error patterns.

Comparing performance across groups
On average, participants answered 75.7% of test items 
correctly (95% CI: [74.9%, 76.5%]), though test per-
formance varied substantially across participants (SD: 
14.0%; min: 3.0%; max: 97.0%). These findings indicate 
both that participants were neither at ceiling nor at floor 
on these assessments, and that there is meaningful indi-
vidual variability in performance to explain. We also 
observed that accuracy for the demographically repre-
sentative sample (78.6%, 95% CI: [77.4%, 79.7%]) was 
higher on the combined assessment than for the univer-
sity sample (73.9%, 95% CI: [72.8%, 75.0%]). Nevertheless, 
we found that relative performance on individual test 
items was highly correlated between samples ( ρ = 0.96, 
95% CI = [0.94, 0.98], p < .0001; Fig. 2A). Together, these 
results suggest that while the two groups of participants 
performed at different levels on average, data from both 

samples provide convergent estimates of the test items’ 
relative difficulty.

We next sought to explore the relationship between 
performance on these assessments and other relevant 
characteristics of these participants, with a focus on 
how much high school-level coursework in mathemat-
ics they had completed (Table 1). Toward that end, we 
grouped participants by how many math courses they 
reported having previously taken (among algebra, cal-
culus, and statistics). We found that the number of 
math courses an individual had taken was a reliable 
predictor of overall test performance ( χ2(3) = 40.04, 
p  < .0001), with more prior math courses leading to 
higher predicted performance (0: 65.1%, 1: 72.5%, 2: 
75.9%, 3: 77.1%); the strength of this association did 
not differ significantly between sample groups ( χ2(3) = 
3.96, p = .27; see Fig. 2B).

Comparing performance across assessments
On average, participants achieved a level of perfor-
mance that was reliably well above chance, yet below 
ceiling, on both tests (GGR: 80.4%, 95% CI: [79.5%, 
81.3%]; VLAT: 74.6%, 95% CI: [73.7%, 75.5%]). How-
ever, there was also substantial individual variabil-
ity in test performance (GGR SD = 15.0%, VLAT SD 
= 15.1%), with an individual’s score on one test being 
moderately predictive of their score on the other ( ρ = 
0.56, 95% CI: [0.52, 0.60 ]; Fig.  3). These findings pro-
vide an initial estimate of these two assessments’ ability 
to reliably measure the same construct. Nevertheless, 
this analysis does not resolve what underlying factors 
account for the observed level of convergence between 

Table 1 Number of participants grouped by how many high 
school-level math courses they reported having previously taken

Num math courses US representative US university

0 39 9

1 136 46

2 116 146

3 108 513

Total 399 714

Fig. 2 A Mean performance on each test item in both US university and US demographically representative samples. Each dot is a test item. 
B Overall performance in each group as a function of the number of math courses (i.e., algebra, calculus, statistics) previously taken. Error bars 
represent standard error of the mean (SEM)
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assessments and what accounts for the remainder of 
the gap between them.

Comparing performance across graph type
One possibility that could account for the moder-
ate correlation between scores on each test is the use 
of similar types of graphs. For instance, some of these 
graph types might be ones that most individuals know 
how to interpret, while others are ones that only a 
minority of individuals are familiar with. Insofar as 
graph type drives variability in test performance, par-
ticipants would be expected to achieve higher accuracy 
on questions involving more familiar graphs, and lower 
accuracy on questions with less familiar graphs.

To explore that possibility, we took an inventory of 
the types of graphs appearing in each assessment. We 
observed that three graph types appeared in both GGR 
and VLAT (i.e., bar chart, line graph, and pie chart), while 
there was one additional graph type that appeared only 
in GGR (i.e., icon array) and nine additional graph types 
appearing only in VLAT (i.e., stacked bar, 100% stacked 
bar, histogram, area chart, stacked area chart, scatter 
plot, bubble chart, map, treemap). We found that perfor-
mance reliably varied across graph types in the combined 
assessment ( χ2(12) = 5066.18, p  < .0001; Fig.  4). While 
both assessments have some overlap in graph types (i.e., 
bar graphs, line graphs, and pie charts), VLAT uses a 
broad range of additional graphs; this raises the possi-
bility that the observed effect of graph type on accuracy 
reflects the combination of the two assessments. How-
ever, we find that performance varies significantly by 
graph type even when considering each assessment indi-
vidually (GGR : χ2(3) = 125.18, p  < .0001; VLAT: χ2(11) 
= 4919.30, p < .0001). The magnitude of this effect also 
reliably differed between samples (combined: χ2(12) = 
130.93, p < .0001; GGR: χ2(3) = 8.67, p = .03; VLAT: χ2

(11) = 112.01, p < .0001), being larger in the demographi-
cally representative sample than in the university sample, 
perhaps reflecting the greater diversity in that sample 
relative to the university-based sample. Taken together, 
these results indicate that graph type accounts for a 
meaningful amount of variation in test performance, sug-
gesting that participants found it easier to answer ques-
tions involving some kinds of graphs than others.

Fig. 3 Correlation between performance on VLAT and GGR 
assessments for individual participants

Fig. 4 Mean proportion correct for every type of graph in the combined assessment, disaggregated by test. Point estimates are plotted for each 
individual graph, aggregating questions that pertain to the same graph. GGR contains multiple instances of bar plots and line plots, one pie 
chart and one icon array. VLAT contains exactly one instance of each type graph. The sampling distributions for each point estimate are shown 
along with error bars representing the standard error of the mean (SEM)
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Comparing performance across question type
An additional factor that might account for variation in 
test performance is the type of question being asked. Per-
haps some questions rely on skills that are more broadly 
shared across participants in the study, such as Level 1: 
Read the Data from GGR and retrieve value from VLAT, 
while other types of questions require understanding of 
more advanced statistical concepts that are familiar only 
to a minority of participants, such as the ability to find 
correlations/trends or characterize distribution in VLAT.

Insofar as question type is a driver of variability in test 
performance, participants would be expected to achieve 
a higher level of accuracy on some types of questions 
than others. Consistent with this possibility, we found 
that performance reliably varied by question type, both 
when each assessment was analyzed independently (GGR 
: χ2(2) = 1331.61, p  < .0001; VLAT: χ2(7) = 1981.92, 
p < .0001; Fig. 5) and when conducting the same analy-
sis for all 11 question types in both assessments ( χ2(10) 
= 3585.91, p  < .0001). In further exploratory analyses, 
we found that variation in performance associated with 
question type was greater in the demographically repre-
sentative sample (overall: χ2(10) = 94.18, p < .0001; GGR: 
χ2(2) = 1.57, p = .46; VLAT: χ2(7) = 71.03, p  < .0001), 
perhaps related to the greater heterogeneity in that sam-
ple. The finding that question type accounts for variation 
in test performance suggests that some types of questions 
are reliably more difficult than others.

Comparing predictive models of performance
Our findings so far provide evidence that both the type of 
graph used and the type of question being asked account 
for at least some of the explainable variance in aver-
age performance at the group level. However, an even 
stronger test of the explanatory value of these factors is 
their ability to account for variation in the patterns of 
errors that different individuals produce. For instance, 
insofar as the ability to “read the data” is distinct from the 
ability to “read beyond the data,” with some individuals 
having mastered one of these, and other individuals hav-
ing mastered both, we would expect to be able to predict 
which questions are more likely to be answered correctly 
by some individuals than others in terms of those skills.

To explore how well graph type and question type pre-
dict these individual differences in absolute terms, we 
sought to establish an upper bound for how well indi-
vidual error patterns could be explained by any decom-
position of these assessments. Toward that end, we used 
exploratory factor analysis (EFA) to infer the decomposi-
tion of the combined assessment that best accounted for 
observed error patterns across all items (see Exploratory 
Factor Analysis in the Methods section for details).

First, we investigated how many factors would be 
needed to achieve strong out-of-sample behavioral pre-
dictivity without being too complex. When fitting the 
data with a variable number of factors, we found that a 
model with three to four factors consistently achieved 
the best performance, as measured using Bayesian 

Fig. 5 Mean proportion correct for every question type in the combined assessment, disaggregated by test. The sampling distributions for each 
point estimate are shown along with error bars representing the standard error of the mean (SEM)
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Information Criterion (BIC; Fig. 6, inset). These findings 
suggest that participants’ error patterns can be explained 
by a relatively compact set of factors, and far fewer than 
there are unique types of questions and graphs across 
VLAT and GGR.

Next, we sought to directly compare the performance 
of idealized factor models based on graph type (13 fac-
tors), question type (11 factors), and test (2 factors) com-
pared with that achieved by this latent factor model (4 
factors) on held-out data under fivefold cross-validation. 
We compared the mean squared error (MSE) of the pre-
dictions made by each of our models (Fig.  6). We find 
that both the question type (MSE = 9.62, 95% CI: [9.09, 
10.19]) and graph type (MSE = 5.07, 95% CI: [4.83, 5.32]) 
models perform better than a 2-factor test type model 
(MSE = 11.52, 95% CI: [10.57, 12.57]), suggesting that 
these features of the assessment items allow for system-
atic predictions of participants’ errors relative to the 
differentiation made by test alone. Further, we find that 
the 13-factor graph type model performs better than the 
11-factor question type model, suggesting that fluency 
with some graphs and not others explains more variance 
in participant responses than their comfort with particu-
lar question types (Peebles and Cheng, 2003). Finally, 
both the graph type and question type models perform 
substantially worse than the 4-factor latent factor model 
(MSE = 0.93, 95% CI: [0.89, 0.96]). Taken together, these 

results suggest that neither graph type nor question type 
on their own can account for much of the explainable 
variation in individual error patterns.

Instead, these error patterns may reflect a more com-
plex interaction between graph type and question type, 
which is captured by the latent factor model. If that were 
the case, then some combinations of question type and 
graph type (e.g., find extremum for a histogram) would be 
expected to load strongly on a latent factor, while other 
items involving either just that question type or just that 
graph type would not. While items involving scatterplots 
and bubble charts seem to load onto factor 2, perhaps 
reflecting the similarity between these types of graphs, it 
is far less clear what unifies the items that load onto the 
remaining factors (Fig. 7; see Supplemental Materials for 
numerical loading values). Indeed, it seems possible that 
there are features of these items beyond graph type and 
question type information that might be needed to bet-
ter explain these behavioral data. In sum, a small number 
of factors seems sufficient to account for individual error 
patterns across VLAT and GGR, but these factors do not 
obviously reflect the categories often used to differentiate 
items in these assessments.

Discussion
In this study, we administered two widely used assess-
ments of data visualization literacy (Galesic and 
Garcia-Retamero, 2011; Lee et al., 2016) to multiple inde-
pendently recruited samples of US adult participants. 
Participants who performed well on one assessment 
also generally performed well on the other, suggesting 
some degree of convergence between these two meas-
ures. Moreover, performance on the combined assess-
ment was associated with how much formal education 
in mathematics participants had received, an indicator 
of these assessments’ convergence with other measures 
of quantitative literacy. However, further investigation 
of individual variability in the patterns of mistakes that 
participants made suggests that these assessments probe 
a suite of skills that are only partially aligned with the 
grouping of items according to the type of question being 
asked or the type of graph being shown. That is, while 
there is some variance explained by these two variables, 
there remains substantial variance that remains unex-
plained by them and is better explained by an alternative 
set of factors that does not seem to have been explicitly 
encoded into the design of these two assessments.

To make sense of these results, it could be helpful to 
draw a distinction between an abstract framework for 
organizing the space of skills relevant to data visualiza-
tion literacy (i.e., graph type, question type) and the 
concrete measures used to probe that space of skills. 
Our results could imply limitations in the measures, the 

Fig. 6 Comparing the ability of different factor-based models 
to predict individual participant error patterns. Inset indicates 
number of factors needed by best-performing latent factor model 
(each curve depicts model fit with increasing factors for a different 
subset of the data)
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Fig. 7 Matrix indicating factor loading values across all items based on the latent factor model, grouped by test, question, and graph type. Darker 
cells reflect higher factor loading values. See Supplemental Materials for numerical loading values
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underlying framework, or both. However, it is often not 
feasible to distinguish between these possibilities on the 
basis of any individual study, including the current one.

Nevertheless, clarifying these issues will likely involve 
conducting more thorough evaluations that include an 
expanded set of measures. For example, it might be use-
ful to include assessments that focus on the ability to 
overcome potentially misleading data visualizations (Ge 
et  al., 2023), as well as specific misconceptions that are 
common among students enrolled in introductory sta-
tistics courses (DelMas et al., 2005). However, even this 
broader set of existing assessments is still limited in sev-
eral key ways. First, there are only a few examples of each 
type of graph represented across all of them. As such, 
the type of graph is almost always confounded with the 
variables being plotted, leaving it unclear whether vari-
ation in performance is attributable to core visualization 
literacy skills, rather than other factors (e.g., prior knowl-
edge about those variables). Second, each test contains a 
relatively small and fixed set of items. With so few items, 
it is challenging to estimate the reliability with which 
any given skill is being measured. With only fixed sets of 
items, it is also not feasible to measure changes in data 
visualization literacy within the same individual, which is 
critical for assessing the impact of formal instruction.

Thus, it would be valuable to develop new assessments, 
leveraging both best practices in psychometric research 
already exemplified by the design of existing tests (Boy 
et al., 2014; Lee et al., 2016), as well as practical strategies 
from modern machine learning for scaling the genera-
tion of test items for inclusion in cognitive assessments 
(Methani et al., 2020; Masry et al., 2022; Zelikman et al., 
2023). In addition, given the broad set of skills that are 
recruited when interpreting a data visualization, it can 
be cumbersome to administer complete versions of every 
test, if the goal is to quickly assess an individual’s liter-
acy level. A more efficient alternative might be to use a 
more targeted set of items identified using item-response 
theory that are particularly diagnostic (Pandey and Ott-
ley, 2023), or even use adaptive testing protocols that 
dynamically propose sequences of items to administer 
that will be most informative about an individual’s lit-
eracy level given their responses so far (Cui et al., 2023). 
The approach taken in the current study could be used 
in conjunction with these more targeted and adaptive 
test development strategies to identify multiple facets of 
visualization literacy that would be valuable to estimate, 
which would entail going beyond conceptualizing literacy 
level as varying along a single dimension. Such improved 
assessments would be valuable for advancing educational 
assessment—the understanding of how well core data lit-
eracy skills are being learned in real-world educational 
settings.

Separately, our findings are also consistent with the 
possibility that there might be alternative frameworks 
for decomposing data visualization literacy that provide 
both more detailed and generalizable ways of predicting 
quantitative patterns in task performance. For instance, 
recent work employing qualitative methods to analyze 
process-level barriers to correct interpretation of data 
visualizations in VLAT has emphasized distinctions 
between errors in translating verbal questions into visual 
queries and errors in the interpretation of plot elements 
(Nobre et al., 2024). Extending such process-level analy-
ses might be a promising route toward clarifying the rela-
tionship between the empirically derived decomposition 
uncovered in the current study and the typologies of data 
visualization literacy skills proposed in prior work (Friel 
et  al., 2001; Brehmer and Munzner, 2013; Börner et  al., 
2019). Measuring those component skills is important 
because they enable differentiation between individuals 
who might otherwise seem equally proficient, but actu-
ally have different strengths and weaknesses. Reliably 
diagnosing those strengths and weaknesses makes it pos-
sible to then provide instruction that is more effectively 
tailored to each individual.

Beyond their role in educational assessment and 
instruction, new measures of data visualization literacy 
could also be instrumental for advancing fundamental 
understanding of the cognitive processes involved in the 
successful interpretation of data visualizations (Pinker, 
1990; Padilla, 2018; Shah and Hoeffner, 2002). These 
processes include the rapid perceptual computations 
(Cleveland and McGill, 1984) performed with respect to 
a known graph schema (Pinker, 1990), explicit numerical 
operations (Gillan and Lewis, 1994) constrained by fintite 
working memory resources (Padilla et  al., 2018), and 
interpretive processes that lead to more general insights 
(Carpenter and Shah, 1998), which may be influenced by 
prior content knowledge (Shah and Freedman, 2011). A 
more thorough understanding of each of these cognitive 
processes is a crucial step toward more unified cognitive 
models of data visualization understanding. One impor-
tant purpose of such cognitive models is to explain why 
someone finds some questions easier to answer with one 
graph than another (Shah and Hoeffner, 2002; Huey et al., 
2023). Previously developed cognitive models have pro-
posed qualitative accounts of how people reason about 
data visualizations (Carpenter and Shah, 1998; Padilla 
et  al., 2018). A promising avenue for future work is to 
develop computational cognitive models that specify the 
operations performed in explicit and quantitative terms: 
the form of the input, the form of the output, and the 
exact operations applied in between. Computational cog-
nitive models have enabled major advances across several 
cognitive domains because they not only offer precise 
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specifications of the mental processes involved, but also 
generate concrete behavioral outputs that can be directly 
compared to what people produce given the same inputs 
(Peterson et al., 2021; Cao and Yamins, 2024; Bear et al., 
2021; Hu et  al., 2022; Mukherjee et  al., 2024). Future 
work employing these approaches are especially timely, 
as computational cognitive models—and in particular, 
AI systems that perform complex real-world tasks—have 
only recently advanced to the point that it is feasible to 
measure these models’ behavior on tasks that approach 
the complexity of those that humans encounter in real-
world settings (Bommasani et al., 2021).

In the current study, we measured a positive relation-
ship between the number of mathematics courses an 
individual had previously taken and how well they per-
formed on the combined assessment, consistent with 
prior work examining the association between formal 
education and behavior on tasks involving data visualiza-
tions (Maltese et al., 2015; Harsh et al., 2019). However, 
while such correlative findings are suggestive, experi-
mental studies are needed to firmly establish any causal 
relationships between specific learning experiences and 
subsequent task performance (Koedinger et  al., 2023; 
Bhatt et  al., 2024; Solomon et  al., 2019). A promising 
approach complementing studies with real students 
might be to conduct so-called in silico experiments with 
computational cognitive models. These models can be 
used to develop and test hypotheses about what kinds of 
experience are needed to acquire various data visualiza-
tion literacy skills. A major advantage of in silico experi-
ments is that they enable researchers to efficiently sweep 
through a wider range of possible learning conditions 
than can be practically and ethically implemented in 
real-world educational environments with human learn-
ers. By systematically manipulating the amount and type 
of experience a computational model receives, it is pos-
sible to investigate what kinds of experience are needed 
to succeed on some tasks and generalize to others (Zamir 
et al., 2018; Zhuang et al., 2021; Gupta et al., 2024). For 
example, a vision-language model might be pretrained 
on a suite of visual, language-based, and quantitative rea-
soning tasks before being evaluated on its ability to accu-
rately interpret data visualizations (Gupta et  al., 2024). 
Comparisons between this model and others that had 
been pretrained on only a subset of the same tasks could 
be used to assess the necessity of certain kinds of prior 
experience to generalize to reasoning tasks involving data 
visualizations.

Conclusions
In sum, the current study evaluated the convergent valid-
ity of two commonly used assessments of data visualiza-
tion literacy. We found that these two measures exhibited 

a reasonable degree of convergence, such that people 
who achieved a high score on one assessment often did 
so on the other as well. In addition, we observed that 
individual variability in performance was related to how 
much formal education in mathematics an individual had 
received. To gain insight into the component skills that 
underlie the observed relationship between assessments, 
we used tools from machine learning to identify latent 
factors that best predicted individual error patterns. 
These latent factors achieve high predictive accuracy but 
do not align with existing typologies that have been used 
to structure these assessments (i.e., the type of graph, 
the kind of task being performed), suggesting the need 
for future work to characterize what component skills 
these factors identify. In sum, this work lays the ground-
work for future efforts to develop improved and unified 
assessments that provide accurate and reliable estimates 
of the underlying components of data visualization lit-
eracy (Uttal et al., 2024). Over the long run, the develop-
ment of unified measures of data visualization literacy is 
not only crucial for advancing cognitive theories of how 
people learn to extract meaning from abstract graphical 
representations, but might also lead to improved ways 
of teaching graphical literacy skills in real-world educa-
tional settings.
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