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Abstract

Modern society frequently requires that we express our sub-
jective senses in objective, shared formal systems; this en-
tails mapping multiple internal variables onto a common scale.
Here we ask whether we accomplish this feat in the case of
estimating number by learning a single mapping between ex-
plicit numbers and one integrated subjective estimate of nu-
merosity, or if we separately map different perceptual features
onto numbers. We present people with arrays of dots and ask
them to report how many dots there are; we rely on the sys-
tematic under/overestimation of number at higher quantities to
estimate error in the mapping function. By comparing how this
error changes over time, as the mapping fluctuates for different
visual cues to numerosity, we can evaluate whether these cues
share a single mapping, or are mapped onto number individu-
ally. We find that area, size, and density all share a common
mapping, indicating that people obtain a unified subjective es-
timate of numerosity before mapping it onto the formal number
line.
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Introduction
Human reasoning and planning frequently involves mapping
internal estimates onto formal systems: we can compare the
weights of two rocks using our subjective sense of weight, but
to provide an estimate of one rock’s weight in kilograms re-
quires mapping that subjective sense of weight onto a formal
metric system. This task of expressing our internal subjective
senses in objective, standard systems is commonplace, from
making time estimates to evaluating prices. To accomplish
this we somehow learn to map from perceptual and internal
states onto formal systems like weight in kilograms. The task
is often complicated by the fact that we might have many sub-
jective variables that must map on to the same formal system:
weight might be estimated by the pressure a rock exerts on
our hand, or by its inertia as we try to move it. How do we
deal with multiple subjective cues: do we map each one in-
dividually onto the formal system, or do we combine them to
come up with a single subjective estimate, and then map that
estimate onto the formal system? In this paper, we approach
this question for people’s ability to estimate numerosity.

Based on a quick glance at a display of many objects, peo-
ple can estimate the number of objects present in the dis-
play. Even if there is insufficient time to explicitly count the
objects, there are enough visual features that correlate with
number, that a number estimate may be obtained just based on
these internal, analog signals which together give us a sense

of “Approximate Magnitude”. Imagine for example stepping
into a room full of people: as you look around, you can get a
rough sense of how many are present just based on the density
of the crowd and the size of the room faster than you would
be able to count each person individually. In general, dis-
plays with higher numerosity tend to have objects distributed
over a larger portion of the visual field (area) and the number
of objects in a constant area tends to be higher, either be-
cause the objects themselves tend to be smaller (size), or be-
cause the inter-object distances are smaller (spacing/density).
These separate cues to numerosity may be treated in different
ways by the visual system. They may be combined into one
internal representation of numerosity which forms the basis
of estimation. Or, because visual cues to numerosity all tend
to correlate together in the real world, it may not be neces-
sary to undertake the extra calculation of integrating them to
form an internal sense of number. Instead, these features may
be mapped onto numbers directly. Both explanations posit
internal representations which must be mapped onto formal
numbers when making estimates, but differ as to how this
mapping occurs.

A large body of research has examined the representations
that support our internal sense of number but comparatively
little work examines how we might map from that internal
sense to number estimates. The degree to which we directly
perceive and represent number is an area of active debate
(for a recent review see Leibovich, Katzin, Harel, and Henik
(2017)). Researchers have proposed that an internal sense of
number, the “Approximate Number System” or ANS, exists
in many animals and is developed by infants at a young age
(Feigenson, Dehaene, & Spelke, 2004). However, compet-
ing accounts emphasize that perceptual features of a quan-
tity such as size, area, and density are highly correlated with
number: this has led some to argue that our ability to estimate
numerical quantities can be served directly by these continu-
ous magnitudes without any internal number sense (Gebuis &
Reynvoet, 2012) or that insofar as we have an internal repre-
sentation of number, it is assembled directly from our sense
of continuous magnitudes (Leibovich et al., 2017).

The present experiment is agnostic about the precise mech-
anisms for visual processing and internal representation of
numerosity. We are interested in understanding how people
map from various internal representations to the formal num-
ber line during numerical estimation. One hypothesis is that



(a) A relationship between visual properties and number estimates
that relies on multiple independent mappings (numbered 1, 2, and 3)
from distinct visual features to an estimate “n”

(b) A relationship between visual properties and number that speci-
fies a single mapping (numbered 1) between some internal quantity
representation (the red incline) and an estimate “n”

Figure 1: Two different ways of thinking about how visual
cues to magnitude map onto numbers

people have multiple mappings which take as their inputs fea-
tures associated with numerosity such as size, density, and
area. Another hypothesis is that people instead have a sin-
gle mapping from some internal representation—whether a
number sense or a broader integrated magnitude—to an es-
timated quantity. Both mapping hypotheses are plausible a
priori and might inform the broader debate about how peo-
ple perceive or represent number. In what follows, we dis-
cuss in greater detail the research on number representation,
which supports the availability of various possible inputs to
this mapping function.

ANS and Continuous Magnitudes
The predominant theory in number processing holds that peo-
ple have an internal approximate number system which they
map onto the formal number system for purposes of estima-
tion and other related tasks (Izard & Dehaene, 2008). Work
in this space has sought to model the characteristics of this
number system, including how it is represented internally
(Izard & Dehaene, 2008) and how it develops in infants and
young children (Carey, 2009). Research on development of
the approximate number system has found that ability to dis-
tinguish between distinct numbers—the acuity of the approx-
imate number system—develops independently of ability to
discriminate area, density, length, and time (Odic, 2018) and
that acuity of number sense in children is correlated with
mathematical ability later in life (Halberda, Mazzocco, &

Feigenson, 2008). In line with the idea that numerosity is
a core part of how we represent the world around us, some
have argued that numerosity is even available as a primary
feature of perception and not reducible to related properties
like texture density (Burr & Ross, 2008). In support of this,
it has been shown that numerosity estimates are subject to vi-
sual adaptation effects, much like other visual properties such
as color and motion (Burr & Ross, 2008).

In contrast to proposals that humans have an internal ap-
proximate number system, some have argued that number es-
timation is inferred directly from visual properties that cor-
relate with number (Dakin, Tibber, Greenwood, & Morgan,
2011). Evidence that people’s ability to estimate quantities
stems directly from their processing of visual cues comes pri-
marily from work showing that people struggle to infer nu-
merosity independently of the information they receive from
visual cues (Leibovich et al., 2017). For example, Gebuis
and Reynvoet (2012) presented participants with a series of
dot arrays which manipulated the convex hull, aggregate sur-
face, and density of the dots such that none of these visual
properties correlated with true quantity across all the trials.
They found that participants’ estimates of the number of dots
in the arrays were largely explained by each of these features
even though these features provided no information about the
true number of dots. They argue that people are therefore un-
able to estimate numerosity independently of the visual cues
which tend to provide certain signals about numerosity. More
recent work has argued that the basis for our sense of num-
ber is our ability to process continuous magnitudes (density,
area, size, etc.): Leibovich et al. (2017) challenge the degree
to which research on the approximate number system is able
to isolate numerosity from visual cues and argue for a more
general magnitude system from which number is inferred.

Regardless of whether people have an internal sense de-
voted specifically to numerosity or assemble their sense
of quantity from continuous magnitudes that correlate with
number, it’s clear from the existing research that a.) nu-
merosity and visual features such as area, size, and density
are closely tied and b.) that a mapping from internal quantity
estimates onto the formal number system could plausibly take
as its inputs any combination of visual features and numerical
representation. In light of this, we propose two hypotheses
about how such a mapping might work. One holds that we
have multiple mappings from size, area, and density features
to number estimates. These mappings could independently
serve our estimation needs. The other holds that we have a
single mapping from some internal quantity representation
onto the number line. This internal representation could be
our approximate number sense or a quantity estimate assem-
bled by combining information from size, area, and density.
In what follows, we summarize research which has exam-
ined people’s performance on number estimation tasks and
describe a novel method of investigating mappings from in-
ternal number to formal number.



Individual differences and drift in mental
number-line calibration
Work investigating the approximate number system has
sought to understand how we map from our internal sense
of number to the verbal number system. Several key findings
have informed this line of inquiry. First, people’s mapping
from internal quantity representations to formal numbers is
often miscalibrated (Izard & Dehaene, 2008). Specifically,
individuals asked to estimate quantities outside the subitiz-

ing range tend to systematically over- or underestimate those
quantities. This relationship follows a power law: the higher
the true quantity, the more people reliably over- or underesti-
mate (Izard & Dehaene, 2008). Second, the amount that peo-
ple are miscalibrated in their estimations varies considerably
across individuals (Vul, Barner, & Sullivan, 2013). Some
people reliably overestimate while others reliably underesti-
mate, suggesting that whatever mapping we use onto formal
number varies from person to person. Finally, the amount that
people are miscalibrated in their estimations varies within in-
dividuals. In other words, the degree to which people over- or
underestimate has been shown to drift over many successive
estimations (Vul et al., 2013).

In this study, we use the slow drift of individuals’ number
estimates to investigate the mapping between internal num-
ber and quantity estimates across various visual conditions.
If people rely on multiple mappings from independent visual
features to numerosity estimates, then we would expect these
mappings to drift independently over many estimates based
on different visual features. However, if people utilize a sin-
gular mapping function from some internal quantity estimate
onto number, then we would expect the drift in their estimates
to be invariant to changes in the visual cues used to form each
estimate. This difference is illustrated in Figure 1.

Experiment
We tested the degree to which the numerosity of a display
is estimated through independent mappings from correlated
visual features (e.g., size, area, and density) to number, or
if these features map onto a single internal numerosity esti-
mate, which is then mapped onto a symbolic number. We
presented participants with an estimation task in which the
stimuli varied along one dimension (size, area, or density)
as magnitude changed, while holding the other two dimen-
sions constant. We compared the drift in participants’ magni-
tude estimations across the three conditions to assess whether
number estimates may be independently obtained from size,
area, and density cues.

Participants
Participants were 57 undergraduates at the University of Cal-
ifornia, San Diego who received course credit for their partic-
ipation.

Methods
Participants were shown a series of dot arrays on a white
background like those in Figure 2. The dots appeared on

Figure 2: Sample stimuli for n = 50 and n = 500 across area,
size, and density conditions.

the screen for 500ms and then disappeared. Participants were
then prompted to guess the number of dots on the screen. We
did not use a mask between trials, as any aid that participants
received in estimating due to an after image would have been
consistent across all trials. For the first 25 trials, participants
were given feedback after each round about the true number
of dots they had just seen. Participants were awarded points
after each round on a logarithmic scale based on the differ-
ence between their guess and the true number of dots. Partic-
ipants performed 1,000 estimation trials or 50 minutes on the
task, whichever came first.

Stimuli
The number of dots on each trial was selected by sampling a
number between 10 and 750 from an exponential distribution
with a mean of 100. Each trial of the experiment was ran-
domly selected to vary one of the area, density, or size of the
dots while keeping the other two constant.

Trials that varied the area of the dots used a predetermined
constant for spacing between dots and dot size so that the
number of dots on the screen was indicated by how much
area the dots occupied. For trials that varied the density of
dots, dots were populated in a constant area on the screen
with a constant size: when there were more dots, the spacing
between them was lower and when there were fewer dots,
there was greater spacing between them. Finally, trials that
varied the size of the dots used a consistent area of the screen
and a consistent spacing between dots, generating larger dots
when there were fewer in a given trial and smaller dots when
the magnitude was greater. See Figure 2 for examples of dot
arrays that varied each visual feature. In each trial, a random
selection determined whether the dot display would vary size,
area, or density so that over the course of the experiment, all
three features would present cues to numerosity but on any
given trial, only one would be informative.

Results
To understand how well participants estimate visual quanti-
ties based on size, area, and density inputs, we can com-
pare their estimates for trials in which each of these fea-
tures were informative to the actual numbers presented. For



Figure 3: Individual data for Number presented and number

reported from three sample participants. The degree to which
each particpant underestimates, overestimates, or is accurate
reflects individual differences in this task

perfect estimators, each estimate plotted this way would lie
along the identity line. Estimates show a high degreee of
variance across individuals: Figure 3 shows data from three
sample participants which illustrate this. Combining this data
across all participants, Figure 4 shows participants’ accuracy
by plotting their estimates alongside the true number pre-
sented for trials varying size, area, and density. Consistent
with earlier findings, people are accurate up to numerosities
of about 20-30, but they reliably underestimate larger num-
bers on average (even setting aside the individual variance:
see Vul et al., 2013). The underestimation pattern in a given
set of trials can be described as a bilinear function which fol-
lows the identity line up to a threshold, and deviates from the
identity line with some slope thereafter. This slope amounts
to the “calibration” of the mental number line (Izard & De-
haene, 2008), and was precisely shown to (a) vary across sub-
jects, and (b) within subjects, slowly drift over the course of
an experiment (Vul et al., 2013). Figure 4 shows that the cal-
ibration of the mapping to the formal number line is similar
regardless of whether area, size, or density is the numerosity-
informative variable.

Previous research has shown that perception of structure
and groupings can lead to systematic underestimation. For
example, objects connected by lines are underestimated rela-
tive to disconnected objects (Franconeri, Bemis, & Alvarez,
2009). When dot arrays are seen as grouped, the degree
to which they’re clustered increases underestimation (Im,
Zhong, & Halberda, 2016). Even sub-conscious processes
like statistical learning of co-occurrence in colored dot arrays
can lead to underestimation (Zhao & Yu, 2016). In the stim-
uli presented here, it is possible that perception of grouping
among dots on various trials led to underestimation. How-
ever, given the similarity in patterns of underestimation in

Figure 4: Number presented and number reported across es-
timate conditions. The red line is the median response for
each number presented. Participants show similar underesti-
mations across estimate conditions.

Figure 4 across modalities, it’s unlikely that underestimation
due to perceptual grouping affected the size, area, or density
informative trials more than any other.

Consistent individual differences across modalities
Dividing each participant’s estimates into blocks of size 50
(after the initial 25 “calibration” trials), we can evaluate the
best fitting slope estimates for each block in each condition.
For example, block 11 for each participant will contain trials
476–525. Of these, some number will be area trials, some
will be size trials, and some will be density trials. We can
extract the trials belonging to each estimate condition (size,
area, density) for a given block of trials for a given partici-
pant, and compute a best fitting slope for that subset of num-
ber estimates for that participant. This gives us a slope for
each estimate condition, for each participant, in each block of
50 trials over the course of the experiment.

To the degree that processes of estimating quantity based
on changes in size, area, and density are independently cal-
ibrated to the data participants have seen, individual differ-
ences in slopes should not be consistent across these different
modalities. However, if different variables are mapped onto
a subjective quantity estimate, and the uncertain, idiosyn-
cratic mapping lies between approximate number and re-
ported number, then an individual’s slope for area-determined
numerosity will be consistent with their density- and size-
determined numerosity as well.

Figure 5 shows each of the possible correlations between
best fitting slopes for size, area, and density estimates across
participants in each block: size-area slope correlations, size-
density slope correlations, and density-area slope correla-
tions. Block zero (trials 1-25) includes the trials in which
participants received feedback after each guess. In these tri-



Figure 5: Slope correlations of size-area, size-density, and
density-area for the first 11 blocks of the experiment. Partic-
ipants received feedback in block 0. After that, correlations
across estimate conditions are relatively high and are tightly
coupled in remaining blocks (error bars indicate 95% confi-
dence intervals on the correlation coefficient).

als, participants were fairly accurate in their estimates. Corre-
lation between slope estimates in block zero is therefore low
due to low variance in slope estimates across all conditions as
a result of the feedback. However, from block one onwards,
correlation of slope estimates between size and density trials,
size and area trials, and density and area trials increases to
0.6–0.8. Critically, each of these three slope estimate corre-
lations (size-area, size-density, and density-area) remain high
and tightly in tandem from block one onwards. Such closely
aligned correlations would be unusual if variations in stimu-
lus size, density, and area across trials each directly and inde-
pendently enabled an estimate of quantity.

Consistent within-individual drift across modalities
The correlation between different slope estimates for each
block, described above, indicates how similar size, area, and
density estimates were to each other across participants in
each set of 50 trials throughout the experiment. In other
words, this shows whether individual differences in numeros-
ity estimations are consistent across modalities. Another fea-
ture of numerosity estimates is their drift in calibration over
time within individuals. Here, we examine the data from esti-
mation across modalities in light of this pattern: if size, area,
and density each independently map to a formal number es-
timate, the drift in calibration for each of these modalities
should be independent. However, if each modality maps to an
internal estimate and the drift reflects changes in the mapping
of internal estimates to formal number, then we will not de-
tect any difference in drift across modalities. Figure 6 shows
the correlation between slopes in blocks 1 – 11 for each possi-
ble comparison of estimate conditions: autocorrelation of e.g.
density slopes across blocks and correlations across modali-

ties of e.g. size to area slopes between each block. The over-
all pattern of correlations across blocks looks very similar for
each of these comparisons, further reinforcing the idea that
these features do not map separately onto number estimates.
Individual drift in over- and underestimations can be seen in
the lower correlation between blocks that are farther apart:
this pattern is also similar across comparisons.

To better compare the slope correlations within and across
modalities, we group pairs of blocks based on their temporal
separation: their trial distance. For example, the correlation
between blocks 1 and 4, and 2 and 5, and 3 and 6, all have
a trial distance of 3 blocks (150 trials). The decline in corre-
lations over longer trial distances indicates the drift of map-
ping over time. We can thus compare these cross-correlation
functions for different modality-modality comparisons. Com-
paring slope estimates for each block of a given condition to
those that are all an equal distance away in the same or al-
ternate estimate conditions gives us a correlation between tri-
als across a range of trial distances. Figure 7 shows these
correlations by distance for the same combinations of esti-
mate conditions shown in Figure 6. Across all comparisons,
the correlations decrease as distance between trials increases.
This drift in estimate slopes—the slopes of trial blocks far-
ther from each other are less similar to the slopes of closer
blocks—reflects the drift in calibration of the mapping func-
tion onto precise quantity over time (Vul et al., 2013).

To ensure that the “drift” shown in Figure 7 is not at-
tributable to differential distributions of each trial type across
blocks of increasing distances, we shuffled trial order for each
participant and re-calculated the correlation of slopes by trial
distance. For the shuffled data, the correlations within and be-
tween modalities were very stable across all trial distances: in
other words, there was no sign of systematic drift. We fit lin-
ear models to the mean correlations at each trial distance for
each modality comparison to ensure that indeed there was no
drift in the shuffled data: for the six comparisons shown in
Figure 7 (with shuffled trial order), none had a slope signifi-
cantly different from 01.

Figure 7 illustrates that the drift in calibration occurs not
only within each estimate condition but also across them:
size-density, size-area, and density-area slope comparisons
show similar decreasing correlations at greater trial distances.
Most importantly, these correlations over trial distances are
indistinguishable whether we consider within-modality corre-
lations (e.g., area-area) or across-modality correlations (e.g.,
area-size). The correlation of slopes over varying trial dis-
tances is indistinguishable within and across modalities. If
visual cues to density, size, and area each map to a subjective
numerosity which then maps to precise quantity estimates,
the similarity of slope correlations within and across esti-

1Shuffled trial order correlation slopes (per block): size-size 95%
CI = [-0.013, 0.001] p = 0.07, density-density 95% CI = [-0.010,
0.002] p = 0.16, area-area 95% CI = [-0.001, 0.015] p = 0.08, size-
density 95% CI = [-0.019, 0.003] p = 0.12, size-area 95% CI = [-
0.014, 0.003] p = 0.19, density-area 95% CI = [-0.006, 0.013] p =
0.39



Figure 6: Slope comparisons between each block across all
estimate conditions. The correlation pattern is similar across
all these comparisons, a pattern seen when plotting correla-
tion by trial distance as well.

mate conditions could be accounted for by separate mapping
functions from visual properties to approximate number be-
ing similarly calibrated. The drift would then be attributed
to the mapping from this internal numerosity to the number
reported. If the estimation of reported quantities was accom-
plished by separate mapping functions from each of the visual
modalities, it would be improbable for these mapping func-
tions to change in lock-step, thus rendering the within- and
across-modality correlations identical.

Conclusion
We asked how people map their analog, perceptual features
onto explicit numbers. Specifically, we investigated whether
(a) people have one mapping from a cohesive, internal es-
timate of numerosity/magnitude onto the number line, or if
(b) people have multiple mappings onto number from differ-
ent visual features that tend to correlate with number. In this
experiment, we asked participants to estimate the number of
dots present in a display, while we varied which visual fea-
ture varied with number. The numerosity of the dot arrays
in a given trial could only ever be inferred from a single per-
ceptual modality (one of size, area, or density) of the dots.

Figure 7: Slope comparisons within and across estimate con-
ditions by trial distance. The correlation of slopes over vary-
ing trial distances is indistinguishable within and across es-
timate conditions (error bars represent standard error across
measurements of each distance).

Using results from prior research indicating that people drift
in their mapping of numerosity to number over the course of
many trials (Vul et al., 2013), we analyzed whether such drift
occurs independently across estimates based on size, density,
and area. We find that the (mis)calibration of numerosity onto
number is indistinguishable between size, area, and density
trials. Moreover, as this mapping drifts over the course of
many trials, it changes in lock-step for all the modalities, in-
dicating that there is only one mapping function that drifts,
which is shared across all modalities. From this we conclude
that size, area, and density all share a common mapping onto
formal number. In other words, perceptual features that are
cues to numerosity must be combined into an internal repre-
sentation of numerosity which is then mapped onto the formal
number line when reporting an exact number.

It would be rash to generalize these results to all cases in
which we might map subjective senses onto objective, ex-
ternal standards (e.g, estimating weight in kilograms, or our
willingness-to-pay in dollars). It seems likely that some for-
mal systems do not have a corresponding unified internal rep-
resentation, and instead have an assortment of independent
mapping functions which may be inconsistent and incom-
mensurate. However, these results are encouraging that for
at least some formal systems, we have unified, coherent in-
ternal representations that serve as their substrate. We postu-
late that the methods we develop here—of relying on fluctu-
ations in the mapping of subjective states onto formal, objec-
tive systems—might be used to identify whether notions like
“subjective value” are indeed unified monolithic entities, or
if they are an ensemble of related, but independent, internal
senses.
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